48 resultados para VENOUS SINUSES
Resumo:
Several authors have shown that neutrophil generation of reactive oxygen species (ROS) declines with advancing age. Similar changes have also been suggested in monocytes. In both cases alterations in second messenger activity have been implicated as the most likely explanation for these observations. The aim of this study was to investigate the effect of age on phagocyte ROS generation, stimulated by the direct activation of protein kinase C (PKC). Venous blood was drawn from normal healthy subjects, cells were separated on a double density gradient into mononuclear and polymorphonuclear (pmn) cells. Phorbol myristate acetate (PMA) was employed as a cell stimulus. Superoxide generation was measured by cytochrome c reduction and myeloperoxidase (MPO) products by measurement of peak luminol chemiluminescence (CL). Fifty-eight subjects, 25 males and 33 females, were studied, median age 49 years (range 26-88 years). Polymorphonuclear cell superoxide generation was significantly higher in males and there was a trend towards higher pmn MPO product generation in males. Using Spearman's ranked correlation coefficient, monocyte superoxide generation was negatively correlated with age (r = -0.473, P <0.001). No changes in the generation of MPO products was found. There were also trends towards a negative correlation of pmn cytochrome c reduction and peak luminol CL with age in males but not females. Since PMA directly activates protein kinase C, reduced monocyte superoxide generation with increasing age appears to be related to alterations in the ROS generating system downstream of the cell receptor. Impaired monocyte superoxide generation may have implications for non-specific defence against certain infections and early tumour growth in the elderly. Factors underlying these changes in monocyte function therefore require further study.
Resumo:
Various parameters of coagulation and fibrinolysis were measured in 13 men (aged 54 +/- 3 yr) with non-insulin-dependent diabetes mellitus (NIDDM) before and after 12-14 wk of exercise training. Subjects exercised for 30 min 3 times/wk at 70% of maximum O2 consumption (VO2max). Training increased VO2max by 12.5% but did not alter body weight, relative body fat, blood pressure, cholesterol, triglycerides, or high-density lipoprotein cholesterol. Slight downward trends were apparent for fasting glucose and insulin, but glycosylated hemoglobin was unchanged. There were no changes in coagulation parameters of plasminogen, hematocrit, or alpha 2-antiplasmin. Plasma fibrinogen (303 +/- 24.2 vs. 256 +/- 12.3 mg/dl) and fibronectin (380 +/- 41.9 vs. 301 +/- 22.2 micrograms/ml) were significantly reduced (P less than 0.02) by exercise conditioning. Three assays of fibrinolytic activity (tissue plasminogen activator, euglobulin lysis time, and an isotopic measure of fibrinolysis) confirmed that neither basal fibrinolysis nor the fibrinolytic responses to venous occlusion and maximal exercise were significantly altered. Exercise conditioning may have antithrombotic effects in NIDDM by reducing plasma fibrinogen and fibronectin. Although the significance of the fall in fibronectin awaits further studies, the reduction in plasma fibrinogen gives a rationale for the use of exercise training in men with NIDDM.
Resumo:
Northern Irish (and all UK-based) health care is facing major challenges. This article uses a specific theory to recommend and construct a framework to address challenges faced by the author, such as deficits in compression bandaging techniques in healing venous leg ulcers and resistance found when using evidence-based research within this practice. The article investigates the challenges faced by a newly formed community nursing team. It explores how specialist knowledge and skills are employed in tissue viability and how they enhance the management of venous leg ulceration by the community nursing team. To address these challenges and following a process of reflection, Lewin's forcefield analysis model of change management can be used as a framework for some recommendations made.
Resumo:
Langer's axillary arch is a recognized muscular anomaly characterized by an accessory muscular band crossing the axilla that rarely causes symptoms. We describe a patient who presented with an upper limb deep vein thrombosis caused by this aberrant muscle, which we believe is the first reported case. Axillary surgery with division of the aberrant muscle relieved upper limb venous obstruction in this patient. (J Vase Surg 2012;55:234-6.)
Resumo:
UNLABELLED: Varicose veins may be due to weakness of the vein wall as a result of structural problems. There are conflicting findings in the literature about these problems especially concerning collagen, elastin and smooth muscle cells content. The aim of this study was to look at the structural abnormalities of varicose veins (with and without valvular incompetence).
MATERIALS AND METHODS: We studied 70 specimens of long saphenous veins from 35 patients (24 with varicose and 11 with normal veins). Two specimens were taken from each vein approximately 3-4 cm from the saphenofemoral junction. Vein specimens were processed for histological and electron microscopic studies. Both qualitative and quantitative analyses were performed to assess the degree of wall changes. Using the image analyzer, contents of collagen, elastin and smooth muscle cells, in addition to intimal and medial thickness, were measured.
RESULTS: Light microscopy revealed significant increase in intimal and medial thickness and collagen content of media and significant decrease in elastin content in varicose veins compared with normal veins. There was no statistical significant difference between varicose veins with and without saphenofemoral valve incompetence. Electron microscopy showed marked degenerative changes in intima and media of varicose veins.
CONCLUSION: The findings in our study supported the theory of primary weakness of the vein wall as a cause of varicosity. This weakness is due to intimal changes, disturbance in the connective tissue components and smooth muscle cells.
Resumo:
Background
Organ dysfunction consequent to infection (‘severe sepsis’) is the leading cause of admission to an intensive care unit (ICU). In both animal models and early clinical studies the calcium channel sensitizer levosimendan has been demonstrated to have potentially beneficial effects on organ function. The aims of the Levosimendan for the Prevention of Acute oRgan Dysfunction in Sepsis (LeoPARDS) trial are to identify whether a 24-hour infusion of levosimendan will improve organ dysfunction in adults who have septic shock and to establish the safety profile of levosimendan in this group of patients.
Methods/DesignThis is a multicenter, randomized, double-blind, parallel group, placebo-controlled trial. Adults fulfilling the criteria for systemic inflammatory response syndrome due to infection, and requiring vasopressor therapy, will be eligible for inclusion in the trial. Within 24 hours of meeting these inclusion criteria, patients will be randomized in a 1:1 ratio stratified by the ICU to receive either levosimendan (0.05 to 0.2 μg.kg-1.min-1 or placebo for 24 hours in addition to standard care. The primary outcome measure is the mean Sequential Organ Failure Assessment (SOFA) score while in the ICU. Secondary outcomes include: central venous oxygen saturations and cardiac output; incidence and severity of renal failure using the Acute Kidney Injury Network criteria; duration of renal replacement therapy; serum bilirubin; time to liberation from mechanical ventilation; 28-day, hospital, 3 and 6 month survival; ICU and hospital length-of-stay; and days free from catecholamine therapy. Blood and urine samples will be collected on the day of inclusion, at 24 hours, and on days 4 and 6 post-inclusion for investigation of the mechanisms by which levosimendan might improve organ function. Eighty patients will have additional blood samples taken to measure levels of levosimendan and its active metabolites OR-1896 and OR-1855. A total of 516 patients will be recruited from approximately 25 ICUs in the United Kingdom.
DiscussionThis trial will test the efficacy of levosimendan to reduce acute organ dysfunction in adult patients who have septic shock and evaluate its biological mechanisms of action.
Resumo:
PURPOSE: Arteriovenous fistulae (AVFs) are the preferred option for vascular access, as they are associated with lower mortality in hemodialysis patients than in those patients with arteriovenous grafts (AVGs) or central venous catheters (CVCs). We sought to assess whether vascular access outcomes for surgical trainees are comparable to fully trained surgeons.
METHODS: A prospectively collected database of patients was created and information recorded regarding patient demographics, past medical history, preoperative investigations, grade of operating surgeon, type of AVF formed, primary AVF function, cumulative AVF survival and functional patency.
RESULTS: One hundred and sixty-two patients were identified as having had vascular access procedures during the 6 month study period and 143 were included in the final analysis. Secondary AVF patency was established in 123 (86%) of these AVFs and 89 (62.2%) were used for dialysis. There was no significant difference in survival of AVFs according to training status of surgeon (log rank x2 0.506 p=0.477) or type of AVF (log rank x2 0.341 p=0.559). Patency rates of successful AVFs at 1 and 2 years were 60.9% and 47.9%, respectively.
CONCLUSION: We have demonstrated in this prospective study that there are no significant differences in outcomes of primary AVFs formed by fully trained surgeons versus surgical trainees. Creation of a primary AVF represents an excellent training platform for intermediate stage surgeons across general and vascular surgical specialties.
Resumo:
Background Exercise training is considered an effective strategy to improve metabolic disease. Despite this, less is known regarding exercise training in the prevention and susceptibility of LDL subfraction oxidation, particularly in an aged population.
Methods Eleven aged (55 ± 4 yrs) and twelve young (21 ± 2 yrs) participants were randomly separated into an experimental or control group as follows: young exercise (n = 6); young control (n = 6); aged exercise (n = 6) and aged control (n = 5). The participants assigned to the exercise groups performed 12 weeks of moderate intensity (55–65% VO2max) exercise training. Venous blood was extracted at baseline, and 48 h following 12 weeks of exercise and assayed for a range of metabolites associated with lipid composition and lipoprotein susceptibility to oxidation.
Results Although there was no difference in the oxidation potential (time ½ max) of LDL I, II or III between groups at baseline (p > 0.05), there was an increase in time ½ max for LDL I following exercise within the aged exercise group (p < 0.05). Moreover, α-tocopherol concentration was selectively lower in the aged exercise group, compared to the young exercise at baseline. The lipid composition of LDL I, LDL II, LDL III, VLDL, HDL2, HDL3 and serum lipid hydroperoxides remained unchanged as a function of exercise training and ageing (p > 0.05).
Conclusion The primary finding of this study demonstrates that adaptations in LDL resistance to oxidation occur following 12 weeks of exercise training in the aged, and this may be of clinical significance, as oxidation of LDL has been implicated in atherosclerosis.
Resumo:
New Findings
What is the central question of this study?Exercise performance is limited during hypoxia by a critical reduction in cerebral and skeletal tissue oxygenation. To what extent an elevation in systemic free radical accumulation contributes to microvascular deoxygenation and the corresponding reduction in maximal aerobic capacity remains unknown.What is the main finding and its importance?We show that altered free radical metabolism is not a limiting factor for exercise performance in hypoxia, providing important insight into the fundamental mechanisms involved in the control of vascular oxygen transport.
Exercise performance in hypoxia may be limited by a critical reduction in cerebral and skeletal tissue oxygenation, although the underlying mechanisms remain unclear. We examined whether increased systemic free radical accumulation during hypoxia would be associated with elevated microvascular deoxygenation and reduced maximal aerobic capacity (). Eleven healthy men were randomly assigned single-blind to an incremental semi-recumbent cycling test to determine in both normoxia (21% O2) and hypoxia (12% O2) separated by a week. Continuous-wave near-infrared spectroscopy was employed to monitor concentration changes in oxy- and deoxyhaemoglobin in the left vastus lateralis muscle and frontal cerebral cortex. Antecubital venous blood samples were obtained at rest and at to determine oxidative (ascorbate radical by electron paramagnetic resonance spectroscopy), nitrosative (nitric oxide metabolites by ozone-based chemiluminescence and 3-nitrotyrosine by enzyme-linked immunosorbent assay) and inflammatory stress biomarkers (soluble intercellular/vascular cell adhesion 1 molecules by enzyme-linked immunosorbent assay). Hypoxia was associated with increased cerebral and muscle tissue deoxygenation and lower (P < 0.05 versus normoxia). Despite an exercise-induced increase in oxidative–nitrosative–inflammatory stress, hypoxia per se did not have an additive effect (P > 0.05 versus normoxia). Consequently, we failed to observe correlations between any metabolic, haemodynamic and cardiorespiratory parameters (P > 0.05). Collectively, these findings suggest that altered free radical metabolism cannot explain the elevated microvascular deoxygenation and corresponding lower in hypoxia. Further research is required to determine whether free radicals when present in excess do indeed contribute to the premature termination of exercise in hypoxia.
Resumo:
Lycopene can exert antioxidant effects against peripheral and cellular oxidative stress and may be associated with reduced diabetic risk. Conversely, exercise-induced free radicals are thought to underpin many of the desirable whole-body adaptations following training and the use of antioxidants within the exercise model remains debatable. PURPOSE: To investigate the effect of lycopene supplementation on oxidative stress and glucose homeostasis following acute aerobic exercise. METHOD: Twenty-eight (n=28) apparently healthy male volunteers were recruited (age 24 ± 4 years; weight 78 ± 10 kg; height 178 ± 8 cm; 2max 40 ± 7 ml·kg-1 ·min-1 ) in a randomised, single blind, placebo-controlled study. Participants were required to attend the Laboratory on two occasions: prior to and following 6 weeks of supplementation of either 10mg lycopene (LG; n=15) or placebo (PG; n=13) followed by a bout of acute exercise for one hour at 65% 2max. Exogenous glucose oxidation was then measured on an isotope ratio mass spectrometer in a sub-group of participants (n=14) following exercise, by administration of a standard oral glucose tolerance test (OGTT; 75g glucose). Venous blood samples were drawn for measurement of oxidative stress parameters, plasma glucose and insulin. RESULTS: Plasma lycopene increased in LG only (0.01 ± 0.004 vs.0.02 ± 0.007 µmol/L; P <0.05) following supplementation and remained elevated post exercise compared to PG (0.01 ± 0.004 vs. 0.02 ± 0.009 µmol/L; P <0.05). There were no changes in other markers of oxidative stress (SOD, LOOHs, F2 ISP and Alkoxyl radical) either between or within the trials, (P >0.05, respectively). A main effect for an increase in insulin was observed two hours post OGTT in the sub-groups (Pooled data, P <0.05) but trends in the HOMA scores were evident with a 57% increase for LG (2.20 ± 1.84 vs. 5.14 ± 2.5; P >0.05) and an 11% decrease for PG (2.17 ± 1.06 vs. 1.94 ± 1.53; P >0.05). No change in plasma glucose was detected at any point, or after the OGTT (P >0.05). CONCLUSION: In healthy males, lycopene supplementation had no effect on post exercise levels of ROS or markers of lipid peroxidation, despite an increase in plasma lycopene. However, lycopene supplementation may affect post exercise insulin sensitivity in response to glucose consumption, but further parallel research is required.
Resumo:
Research detailing the normal vascular adaptions to high altitude is minimal and often confounded by pathology (e.g. chronic mountain sickness) and methodological issues. We examined vascular function and structure in: (1) healthy lowlanders during acute hypoxia and prolonged (∼2 weeks) exposure to high altitude, and (2) high-altitude natives at 5050 m (highlanders). In 12 healthy lowlanders (aged 32 ± 7 years) and 12 highlanders (Sherpa; 33 ± 14 years) we assessed brachial endothelium-dependent flow-mediated dilatation (FMD), endothelium-independent dilatation (via glyceryl trinitrate; GTN), common carotid intima–media thickness (CIMT) and diameter (ultrasound), and arterial stiffness via pulse wave velocity (PWV; applanation tonometry). Cephalic venous biomarkers of free radical-mediated lipid peroxidation (lipid hydroperoxides, LOOH), nitrite (NO2–) and lipid soluble antioxidants were also obtained at rest. In lowlanders, measurements were performed at sea level (334 m) and between days 3–4 (acute high altitude) and 12–14 (chronic high altitude) following arrival to 5050 m. Highlanders were assessed once at 5050 m. Compared with sea level, acute high altitude reduced lowlanders’ FMD (7.9 ± 0.4 vs. 6.8 ± 0.4%; P = 0.004) and GTN-induced dilatation (16.6 ± 0.9 vs. 14.5 ± 0.8%; P = 0.006), and raised central PWV (6.0 ± 0.2vs. 6.6 ± 0.3 m s−1; P = 0.001). These changes persisted at days 12–14, and after allometrically scaling FMD to adjust for altered baseline diameter. Compared to lowlanders at sea level and high altitude, highlanders had a lower carotid wall:lumen ratio (∼19%, P ≤ 0.04), attributable to a narrower CIMT and wider lumen. Although both LOOH and NO2– increased with high altitude in lowlanders, only LOOH correlated with the reduction in GTN-induced dilatation evident during acute (n = 11, r = −0.53) and chronic (n = 7, r = −0.69; P ≤ 0.01) exposure to 5050 m. In a follow-up, placebo-controlled experiment (n = 11 healthy lowlanders) conducted in a normobaric hypoxic chamber (inspired O2 fraction () = 0.11; 6 h), a sustained reduction in FMD was evident within 1 h of hypoxic exposure when compared to normoxic baseline (5.7 ± 1.6 vs. 8.0 ±1.3%; P < 0.01); this decline in FMD was largely reversed following α1-adrenoreceptor blockade. In conclusion, high-altitude exposure in lowlanders caused persistent impairment in vascular function, which was mediated partially via oxidative stress and sympathoexcitation. Although a lifetime of high-altitude exposure neither intensifies nor attenuates the impairments seen with short-term exposure, chronic high-altitude exposure appears to be associated with arterial remodelling.
Resumo:
Access-related bacteremia is an important cause of morbidity in chronic hemodialysis patients. The incidence of bacteremia is higher in patients dialyzing through a tunneled central venous catheter (TCVC) compared with an arteriovenous fistula (AVF). Our aim was to explore if this is explained by patient comorbidity. Two groups of chronic hemodialysis outpatients were compared: all patients who dialyzed through a TCVC at any time during 2003 and were fit enough to subsequently have a functioning AVF or renal transplant even if it was after 2003 (Group 1; n=93); and all patients who dialyzed through a TCVC in 2003 and were not fit enough to have a functioning AVF or renal transplant (Group 2; n=119). Episodes of bacteremia (n=71) were identified and those not related to access were excluded. Patients in Group 1 were younger than Group 2 (57.5 years vs. 64.8 years; P=0.001). The incidences of bacteremia in Groups 1 and 2 were, respectively, 0.31 and 0.44 episodes per 1000 patient days while dialyzing through an AVF (P=0.77), and 2.21 and 2.27 per 1000 days while dialyzing through a TCVC (P=0.91). The 3-year actual survival from January 1, 2003 to January 1, 2006 was significantly higher in Group 1 than in Group 2 (80.6% vs. 26.1%; P<0.0001) confirming the higher comorbidity of the patients in Group 2. Patients dialyzing through a TCVC (compared with an AVF) have a significantly higher risk of access-related bacteremia, irrespective of comorbidity.
Resumo:
Introduction: The 'scaly-foot gastropod' (Chrysomallon squamiferum Chen et al., 2015) from deep-sea hydrothermal vent ecosystems of the Indian Ocean is an active mobile gastropod occurring in locally high densities, and it is distinctive for the dermal scales covering the exterior surface of its foot. These iron-sulfide coated sclerites, and its nutritional dependence on endosymbiotic bacteria, are both noted as adaptations to the extreme environment in the flow of hydrogen sulfide. We present evidence for other adaptations of the 'scaly-foot gastropod' to life in an extreme environment, investigated through dissection and 3D tomographic reconstruction of the internal anatomy.
Results: Our anatomical investigations of juvenile and adult specimens reveal a large unganglionated nervous system, a simple and reduced digestive system, and that the animal is a simultaneous hermaphrodite. We show that Chrysomallon squamiferum relies on endosymbiotic bacteria throughout post-larval life. Of particular interest is the circulatory system: Chrysomallon has a very large ctenidium supported by extensive blood sinuses filled with haemocoel. The ctenidium provides oxygen for the host but the circulatory system is enlarged beyond the scope of other similar vent gastropods. At the posterior of the ctenidium is a remarkably large and well-developed heart. Based on the volume of the auricle and ventricle, the heart complex represents approximately 4 % of the body volume. This proportionally giant heart primarily sucks blood through the ctenidium and supplies the highly vascularised oesophageal gland. Thus we infer the elaborate cardiovascular system most likely evolved to oxygenate the endosymbionts in an oxygen poor environment and/or to supply hydrogen sulfide to the endosymbionts.
Conclusions: This study exemplifies how understanding the autecology of an organism can be enhanced by detailed investigation of internal anatomy. This gastropod is a large and active species that is abundant in its hydrothermal vent field ecosystem. Yet all of its remarkable features-protective dermal sclerites, circulatory system, high fecundity-can be viewed as adaptations beneficial to its endosymbiont microbes. We interpret these results to show that, as a result of specialisation to resolve energetic needs in an extreme chemosynthetic environment, this dramatic dragon-like species has become a carrying vessel for its bacteria.
Resumo:
BACKGROUND: Improving diet and lifestyle is important for prevention of cardiovascular disease (CVD). Observational evidence suggests that increasing fruit and vegetable (FV) consumption may lower CVD risk, largely through modulation of established risk factors, but intervention data are required to fully elucidate the mechanisms by which FVs exert benefits on vascular health.
OBJECTIVE: The aim of this study was to examine the dose-response effect of FV intake on cardiovascular risk factors in adults at high CVD risk.
METHODS: This was a randomized controlled parallel group study involving overweight adults (BMI: >27 and ≤35 kg/m(2)) with a habitually low FV intake (≤160 g/d) and a high total risk of developing CVD (estimated ≥20% over 10 y). After a 4-wk run-in period where FV intake was limited to <2 portions/d (<160 g/d), 92 eligible participants were randomly assigned to 1 of 3 groups: to consume either 2, 4, or 7 portions (equivalent to 160 g, 320 g, or 560 g, respectively) of FVs daily for 12 consecutive weeks. Fasting venous blood samples were collected at baseline (week 4) and post-intervention (week 16) for analysis of lipid fractions and high-sensitivity C-reactive protein (hsCRP) concentrations. Compliance with the FV intervention was determined with use of self-reported FV intake and biomarkers of micronutrient status. Ambulatory blood pressure and body composition were also measured pre- and post-intervention.
RESULTS: A total of 89 participants completed the study and body composition remained stable throughout the intervention period. Despite good compliance with the intervention, no significant difference was found between the FV groups for change in measures of ambulatory blood pressure, plasma lipids, or hsCRP concentrations.
CONCLUSIONS: There was no evidence of a dose-response effect of FV intake on conventional CVD risk factors measured in overweight adults at high CVD risk. This trial was registered at clinicaltrials.gov as NCT00874341.
Resumo:
The prothrombin G20210A polymorphism is associated with a threefold-increased risk of venous thrombosis. There is considerable variation in the reported prevalence of this polymorphism within normal populations, ranging from 0 to 6.5%. The prevalence within the Irish population has not been determined. A restriction fragment length polymorphism (RFLP)-based assay is commonly used for the detection of the prothrombin 20210A allele. This assay does not include a control restriction digest fragment and, consequently, failure of the enzyme activity or lack of addition of enzyme to the sample cannot be distinguished from wild-type prothrombin. We developed a RFLP-based assay, which incorporates an invariant digest site, resulting in the generation of a control digest fragment. Furthermore, we developed a nested polymerase chain reaction (PCR) method for the amplification and digestion of poor-quality or low-concentration DNA. In the Irish population studied, five of 385 (1.29%) were heterozygous and one patient was homozygous for the prothrombin 20210A polymorphism. This is the first reported data on an Irish or Celtic population and suggests that the allele frequency is similar to Anglo-Saxon populations. The nested PCR method successfully amplified and digested 100/100 (100%) of the archived samples; none of these samples could be analyzed by the standard single-round PCR method. In conclusion, nested PCR should be considered in the analysis of archived samples. Single-round PCR is appropriate for recently collected samples; however, an invariant control digest site should be incorporated in RFLP-based assays to validate the integrity of the digestion enzyme and limit the risk of false-negative results.