69 resultados para Unsteady flow (Fluid dynamics)
Resumo:
Solid particle erosion is a major concern in the engineering industry, particularly where transport of slurry flow is involved. Such flow regimes are characteristic of those in alumina refinement plants. The entrainment of particulate matter, for example sand, in the Bayer liquor can cause severe erosion in pipe fittings, especially in those which redirect the flow. The considerable costs involved in the maintenance and replacement of these eroded components led to an interest in research into erosion prediction by numerical methods at Rusal Aughinish alumina refinery, Limerick, Ireland, and the University of Limerick. The first stage of this study focused on the use of computational fluid dynamics (CFD) to simulate solid particle erosion in elbows. Subsequently an analysis of the factors that affect erosion of elbows was performed using design of experiments (DOE) techniques. Combining CFD with DOE harnesses the computational power of CFD in the most efficient manner for prediction of elbow erosion. An analysis of the factors that affect the erosion of elbows was undertaken with the intention of producing an erosion prediction model. © 2009 Taylor & Francis.
Resumo:
Broadcast spawning invertebrates that live in shallow, high-energy coastal habitats are subjected to oscillatory water motion that creates unsteady flow fields above the surface of animals. The frequency of the oscillatory fluctuations is driven by the wave period, which will influence the stability of local flow structures and may affect fertilization processes. Using an oscillatory water tunnel, we quantified the percentage of eggs fertilized on or near spawning green sea urchins, Strongylocentrotus droebachiensis. Eggs were sampled in the water column, wake eddy, substratum and aboral surface under a range of different periods (T = 4.5 – 12.7 s) and velocities of oscillatory flow. The root-mean-square wave velocity (rms(uw)) was a good predictor of fertilization in oscillatory flow, although the root-mean-square of total velocity (rms(u)), which incorporates all the components of flow (current, wave and turbulence), also provided significant predictions. The percentage of eggs fertilized varied between 50 – 85% at low flows (rms(uw) < 0.02 m s-1), depending on the location sampled, but declined to below 10% for most locations at higher rms(uw). The water column was an important location for fertilization with a relative contribution greater than that of the aboral surface, especially at medium and high rms(uw) categories. We conclude that gametes can be successfully fertilized on or near the parent under a range of oscillatory flow conditions.
Resumo:
Bottom hinged Oscillating Wave Surge Converters (OWSCs) are efficient devices for extracting power from ocean waves. There is limited knowledge about wave slamming on such devices. This paper deals with numerical studies of wave slamming on an oscillating flap to investigate the mechanism of slamming events. In our model, the Navier–Stokes equations are discretized using the Finite Volume method with the Volume of Fluid (VOF) approach for interface capturing. Waves are generated by a flaptype wave maker in the numerical wave tank, and the dynamic mesh method is applied to model the motion of the oscillating flap. Basic mesh and time step refinement studies are performed. The flow characteristics in a slamming event are analysed based on numerical results. Various simulations with different flap densities, water depths and wave amplitudes are performed for a better understanding of the slamming.
Resumo:
The term fatigue loads on the Oyster Oscillating Wave Surge Converter (OWSC) is used to describe hydrostatic loads due to water surface elevation with quasi-static changes of state. Therefore a procedure to implement hydrostatic pressure distributions into finite element analysis of the structure is desired. Currently available experimental methods enable one to measure time variant water surface elevation at discrete locations either on or around the body of the scale model during tank tests. This paper discusses the development of a finite element analysis procedure to implement time variant, spatially distributed hydrostatic pressure derived from discretely measured water surface elevation. The developed method can process differently resolved (temporal and spatial) input data and approximate the elevation over the flap faces with user defined properties. The structural loads, namely the forces and moments on the body can then be investigated by post processing the numerical results. This method offers the possibility to process surface elevation or hydrostatic pressure data from computational fluid dynamics simulations and can thus be seen as a first step to a fluid-structure interaction model.
Resumo:
Heat sinks are widely used for cooling electronic devices and systems. Their thermal performance is usually determined by the material, shape, and size of the heat sink. With the assistance of computational fluid dynamics (CFD) and surrogate-based optimization, heat sinks can be designed and optimized to achieve a high level of performance. In this paper, the design and optimization of a plate-fin-type heat sink cooled by impingement jet is presented. The flow and thermal fields are simulated using the CFD simulation; the thermal resistance of the heat sink is then estimated. A Kriging surrogate model is developed to approximate the objective function (thermal resistance) as a function of design variables. Surrogate-based optimization is implemented by adaptively adding infill points based on an integrated strategy of the minimum value, the maximum mean square error approach, and the expected improvement approaches. The results show the influence of design variables on the thermal resistance and give the optimal heat sink with lowest thermal resistance for given jet impingement conditions.
Resumo:
This study provides a novel meanline modeling approach for centrifugal compressors. All compressors analyzed are of the automotive turbocharger variety and have typical upstream geometry with no casing treatments or preswirl vanes. Past experience dictates that inducer recirculation is prevalent toward surge in designs with high inlet shroud to outlet radius ratios; such designs are found in turbocharger compressors due to the demand for operating range. The aim of the paper is to provide further understanding of impeller inducer flow paths when operating with significant inducer recirculation. Using three-dimensional (3D) computational fluid dynamics (CFD) and a single-passage model, the flow coefficient at which the recirculating flow begins to develop and the rate at which it grows are used to assess and correlate work and angular momentum delivered to the incoming flow. All numerical modeling has been fully validated using measurements taken from hot gas stand tests for all compressor stages. The new modeling approach links the inlet recirculating flow and the pressure ratio characteristic of the compressor. Typically for a fixed rotational speed, between choke and the onset of impeller inlet recirculation the pressure ratio rises gradually at a rate dominated by the aerodynamic losses. However, in modern automotive turbocharger compressors where operating range is paramount, the pressure ratio no longer changes significantly between the onset of recirculation and surge. Instead the pressure ratio remains relatively constant for reducing mass flow rates until surge occurs. Existing meanline modeling techniques predict that the pressure ratio continues to gradually rise toward surge, which when compared to test data is not accurate. A new meanline method is presented here which tackles this issue by modeling the direct effects of the recirculation. The result is a meanline model that better represents the actual fluid flow seen in the CFD results and more accurately predicts the pressure ratio and efficiency characteristics in the region of the compressor map affected by inlet recirculation.
Resumo:
As the designers of modern automotive turbochargers strive to increase map width and lower the mass flow rate at which compressor surge occurs, the recirculating flows at the impeller inlet are becoming a much more relevant aerodynamic feature. Compressors with relatively large map widths tend to have very large recirculating regions at the inlet when operating close to surge; these regions greatly affect the expected performance of the compressor.
This study analyses the inlet recirculation region numerically using several modern automotive turbocharger centrifugal compressors. Using 3D Computational Fluid Dynamics (CFD) and a single passage model, the point at which the recirculating flow begins to develop and the rate at which it grows are investigated. All numerical modelling has been validated using measurements taken from hot gas stand tests for all compressor stages. The paper improves upon an existing correlation between the rate of development of the recirculating region and the compressor stage, which is supported by results from the numerical analysis.
Resumo:
Automotive manufacturers require improved part load engine performance to further improve fuel economy. For a swing vane VGS (Variable Geometry Stator) turbine this means a more closed stator vane, to deal with the low MFRs (Mass Flow Rates), high PRs (Pressure Ratios) and low rotor rotational speeds. During these conditions the turbine is operating at low velocity ratios. As more energy is available at high pressure ratios and during lower turbocharger rotational speeds, a turbine which is efficient at these conditions is desirable. Another key aspect for automotive manufacturers is engine responsiveness. High inertia designs result in “turbo lag” which means an increased time before the target boost pressure is reached. Therefore, designs with improved performance at low velocity ratios, reduced inertia or an increased swallowing capacity are the current targets for turbocharger manufacturers.
To try to meet these design targets a CFD (Computational Fluid Dynamics) study was performed on a turbine wheel using splitter blades. A number of parameters were investigated. These included splitter blade merdional length, blade number and blade angle distribution.
The numerical study was performed on a scaled automotive VGS. Three different stator vane positions have been analysed. A single passage CFD model was developed and used to provide information on the flow features affecting performance in both the stator vanes and turbine.
Following the CFD investigation the design with the best compromise in terms of performance, inertia and increased MFP (Mass Flow Parameter) was selected for manufacture and testing. Tests were performed on a scaled, low temperature turbine test rig. The aerodynamic flow path of the gas stand was the same as that investigated during the CFD. The test results revealed a design which had similar performance at the closed stator vane positions when compared to the baseline wheel. At the maximum MFR stator vane condition a drop of −0.6% pts in efficiency was seen. However, 5.5% increase in MFP was obtained with the additional benefit of a drop in rotor inertia of 3.7%, compared to the baseline wheel.
Resumo:
A novel surrogate model is proposed in lieu of Computational Fluid Dynamics (CFD) solvers, for fast nonlinear aerodynamic and aeroelastic modeling. A nonlinear function is identified on selected interpolation points by
a discrete empirical interpolation method (DEIM). The flow field is then reconstructed using a least square approximation of the flow modes extracted
by proper orthogonal decomposition (POD). The aeroelastic reduce order
model (ROM) is completed by introducing a nonlinear mapping function
between displacements and the DEIM points. The proposed model is investigated to predict the aerodynamic forces due to forced motions using
a N ACA 0012 airfoil undergoing a prescribed pitching oscillation. To investigate aeroelastic problems at transonic conditions, a pitch/plunge airfoil
and a cropped delta wing aeroelastic models are built using linear structural models. The presence of shock-waves triggers the appearance of limit
cycle oscillations (LCO), which the model is able to predict. For all cases
tested, the new ROM shows the ability to replicate the nonlinear aerodynamic forces, structural displacements and reconstruct the complete flow
field with sufficient accuracy at a fraction of the cost of full order CFD
model.
Resumo:
The spouted bed was widely used due to its good mixing of particles and effective phase transferability between the gas and solid phase. In this paper, the transportation process of particles in a 3D spouted bed was studied using the Computational Particle Fluid Dynamics (CPFD) numerical method. Experiments were conducted to verify the validity of the simulation results. Distributions of the pressure, velocities and particle concentration of transportation devices were investigated. The motion state and characteristics of multiphase flows in the transportation device were demonstrated under various operating conditions. The results showed that a good consistency was obtained between the simulated results and the experimental results. The motion characteristics of the gas-solid two-phase flow in the device was effectively predicted, which could assist the optimal operating condition estimation for the spouted transportation process.
Resumo:
Steady-state computational fluid dynamics (CFD) simulations are an essential tool in the design process of centrifugal compressors. Whilst global parameters, such as pressure ratio and efficiency, can be predicted with reasonable accuracy, the accurate prediction of detailed compressor flow fields is a much more significant challenge. Much of the inaccuracy is associated with the incorrect selection of turbulence model. The need for a quick turnaround in simulations during the design optimisation process, also demands that the turbulence model selected be robust and numerically stable with short simulation times.
In order to assess the accuracy of a number of turbulence model predictions, the current study used an exemplar open CFD test case, the centrifugal compressor ‘Radiver’, to compare the results of three eddy viscosity models and two Reynolds stress type models. The turbulence models investigated in this study were (i) Spalart-Allmaras (SA) model, (ii) the Shear Stress Transport (SST) model, (iii) a modification to the SST model denoted the SST-curvature correction (SST-CC), (iv) Reynolds stress model of Speziale, Sarkar and Gatski (RSM-SSG), and (v) the turbulence frequency formulated Reynolds stress model (RSM-ω). Each was found to be in good agreement with the experiments (below 2% discrepancy), with respect to total-to-total parameters at three different operating conditions. However, for the off-design conditions, local flow field differences were observed between the models, with the SA model showing particularly poor prediction of local flow structures. The SST-CC showed better prediction of curved rotating flows in the impeller. The RSM-ω was better for the wake and separated flow in the diffuser. The SST model showed reasonably stable, robust and time efficient capability to predict global and local flow features.
Resumo:
The rimming ?ow of a power-law ?uid in the inner surface of a horizontal rotating cylinder is investigated. Exploiting the fact that the liquid layer is thin, the simplest lubrication theory is applied. The generalized run-off condition for the steady-state ?ow of the power-law liquid is derived. In the bounds implied by this condition, ?lm thickness admits a continuous solution. In the supercritical case when the mass of non-Newtonian liquid exceeds a certain value or the speed of rotation is less than an indicated limit, a discontinuous solution is possible and a hydraulic jump may occur in the steady-state regime. The location and height of the hydraulic jump for the power-law liquid is determined.