63 resultados para Underwater acoustics -- instruments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most single-reed woodwind instrument models rely on a quasistationary approximation to describe the relationship between the volume flow and. the pressure difference across the reed channel. Semiempirical models based on the quasistationary approximation are very useful in explaining the fundamental characteristics of this family of instruments such as self-sustained oscillations and threshold of blowing pressure. However, they fail at explaining more complex phenomena associated with the fluid-structure interaction during dynamic flow regimes, such as the transient and steady-state behavior of the system as a function. of the mouthpiece geometry. Previous studies have discussed the accuracy of the quasistationary approximation but the amount of literature on the subject is sparse, mainly due to the difficulties involved in the measurement of dynamic flows in channels with an oscillating reed. In this paper, a numerical technique based on the lattice Boltzmann method and a finite difference scheme is proposed in order to investigate the characteristics of fully coupled fluid-structure interaction in single-reed mouthpieces with different channel configurations. Results obtained for a stationary simulation with a static reed agree very well with those predicted by the literature based on the quasistationary approximation. However, simulations carried out for a dynamic regime with dn oscillating reed show that the phenomenon associated with flow detachment and reattachment diverges considerably frorn the theoretical assumptions. Furthermore, in the case of long reed channels, the results obtained for the vena contracta factor are in significant disagreement with those predicted by theory. For short channels, the assumption of constant vena contracta was found to be valid for only 40% of the duty cycle. (c) 2007 Acoustical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for modeling-frequency-dependent boundaries in finite-difference time-domain (FDTD) and Kirchhoff variable digital waveguide mesh (K-DWM) room acoustics simulations is presented. The proposed approach allows the direct incorporation of a digital impedance filter (DIF) in the Multidimensional (2D or 3D) FDTD boundary model of a locally reacting surface. An explicit boundary update equation is obtained by carefully constructing a Suitable recursive formulation. The method is analyzed in terms of pressure wave reflectance for different wall impedance filters and angles of incidence. Results obtained from numerical experiments confirm the high accuracy of the proposed digital impedance filter boundary model, the reflectance of which matches locally reacting surface (LRS) theory closely. Furthermore a numerical boundary analysis (NBA) formula is provided as a technique for an analytic evaluation of the numerical reflectance of the proposed digital impedance filter boundary formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a complete method for finite-difference time-domain modeling of rooms in 2-D using compact explicit schemes is presented. A family of interpolated schemes using a rectilinear, nonstaggered grid is reviewed, and the most accurate and isotropic schemes are identified. Frequency-dependent boundaries are modeled using a digital impedance filter formulation that is consistent with locally reacting surface theory. A structurally stable and efficient boundary formulation is constructed by carefully combining the boundary condition with the interpolated scheme. An analytic prediction formula for the effective numerical reflectance is given, and a stability proof provided. The results indicate that the identified accurate and isotropic schemes are also very accurate in terms of numerical boundary reflectance, and outperform directly related methods such as Yee's scheme and the standard digital waveguide mesh. In addition, one particular scheme-referred to here as the interpolated wideband scheme-is suggested as the best scheme for most applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents methods for simulating room acoustics using the finite-difference time-domain (FDTD) technique, focusing on boundary and medium modeling. A family of nonstaggered 3-D compact explicit FDTD schemes is analyzed in terms of stability, accuracy, and computational efficiency, and the most accurate and isotropic schemes based on a rectilinear grid are identified. A frequency-dependent boundary model that is consistent with locally reacting surface theory is also presented, in which the wall impedance is represented with a digital filter. For boundaries, accuracy in numerical reflection is analyzed and a stability proof is provided. The results indicate that the proposed 3-D interpolated wideband and isotropic schemes outperform directly related techniques based on Yee's staggered grid and standard digital waveguide mesh, and that the boundary formulations generally have properties that are similar to that of the basic scheme used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a method for modeling diffusive boundaries in finite difference time domain (FDTD) room acoustics simulations with the use of impedance filters is presented. The proposed technique is based on the concept of phase grating diffusers, and realized by designing boundary impedance filters from normal-incidence reflection filters with added delay. These added delays, that correspond to the diffuser well depths, are varied across the boundary surface, and implemented using Thiran allpass filters. The proposed method for simulating sound scattering is suitable for modeling high frequency diffusion caused by small variations in surface roughness and, more generally, diffusers characterized by narrow wells with infinitely thin separators. This concept is also applicable to other wave-based modeling techniques. The approach is validated by comparing numerical results for Schroeder diffusers to measured data. In addition, it is proposed that irregular surfaces are modeled by shaping them with Brownian noise, giving good control over the sound scattering properties of the simulated boundary through two parameters, namely the spectral density exponent and the maximum well depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Support for family caregivers is a core function of palliative care. However, there is a lack of consistency in the way needs are assessed, few longitudinal studies to examine the impact of caregiving, and a dearth of evidence-based interventions. In order to help redress this situation, identification of suitable instruments to examine the caregiving experience and the effectiveness of interventions is required. A systematic literature review was undertaken incorporating representatives of the European Association for Palliative Care’s International Palliative Care Family Caregiver Research Collaboration and Family Carer Taskforce. The aim of the review was to identify articles that described the use of instruments administered to family caregivers of palliative care patients (pre and post-bereavement). Fourteen of the 62 instruments targeted satisfaction with service delivery and less than half were developed specifically for the palliative care context. In approximately 25% of articles psychometric data were not reported. Where psychometric results were reported, validity data were reported in less than half (42%) of these cases. While a considerable variety of instruments have been administered to family caregivers, the validity of some of these requires further consideration. We recommend that others be judicious before developing new instruments for this population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the outset of a discussion of evaluating digital musical instruments, that is to say instruments whose sound generators are digital and separable though not necessarily separate from their control interfaces (Malloch, 2006), it is reasonable to ask what the term evaluation in this context really means. After all, there may be many perspectives from which to view the effectiveness or otherwise of the instruments we build. For most performers, performance on an instrument becomes a means of evaluating how well it functions in the context of live music making, and their measure of success is the response of the audience to their performance. Audiences evaluate performances on the basis of how engaged they feel they have been by what they have seen and heard. When questioned, they are likely to describe good performances as “exciting,” “skillful,” “musical.” Bad performances are “boring,” and those which are marred by technical malfunction are often dismissed out of hand. If performance is considered to be a valid means of evaluating a musical instrument, then it follows that, for the field of DMI design, a much broader definition of the term “evaluation” than that typically used in human-computer interaction (HCI) is required to reflect the fact that there are a number of stakeholders involved in the design and evaluation of DMIs. In addition to players and audiences, there are also composers, instrument builders, component manufacturers, and perhaps even customers, each of whom will have a different concept of what is meant by “evaluation.”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to review recent developments in the design and fabrication of Frequency Selective Surfaces (FSS) which operate above 300 GHz. These structures act as free space electromagnetic filters and as such provide passive remote sensing instruments with multispectral capability by separating the scene radiation into separate frequency channels. Significant advances in computational electromagnetics, precision micromachining technology and metrology have been employed to create state of the art FSS which enable high sensitivity receivers to detect weak molecular emissions at THz wavelengths. This new class of quasi-optical filter exhibits an insertion loss

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates numerical simulation of a string coupled
transversely to a resonant body. Starting from a complete nite
difference formulation, a second model is derived in which the
body is represented in modal form. The main advantage of this hybrid form is that the body model is scalable, i.e. the computational
complexity can be adjusted to the available processing power. Numerical results are calculated and discussed for simplied models
in the form of string-string coupling and string-plate coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alvin Lucier, in his uncompromising exploration into the artistic potential of acoustic phenomena, has developed a body of work that remains highly original and hugely influential across many disciplines. His seminal works such as I am sitting in a room and Music for Solo Performer foreshadowed ways of approaching sound that are in common use among electro-acoustic composers, installation artists, as well as in commercial products. Lucier, despite his far reaching influence, is and has always been a composer, and his explorations of acoustics have been singularly focused on the development of a rich body of music. In this article, I investigate Lucier’s unique approach and attitude towards acoustics and aspire to enumerate important aesthetic developments he has made in creating music through the exploration of acoustic phenomena. In particular, this article seeks to investigate the role of semiotics in Lucier’s work, commenting on the pre-linguistic nature of Lucier’s approach to acoustic phenomenon. Here as well, an exploration of Lucier’s musical materials takes place, focusing on his instrumental compositions, specifically Diamonds for One, Two or Three Orchestras, where instruments are used as catalysts to generate in real-time acoustic phenomenon which interact to produce a rich yet intimate world of sound. Finally, Lucier’s approach to semiotics and real-time generation of music is viewed through a sublime aesthetic provoking questions regarding issues of presence and the now.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of the acoustical functioning of musical instruments invariably involves the estimation of model parameters. The broad aim of this paper is to develop methods for estimation of clarinet reed parameters that are representative of actual playing conditions. This presents various challenges because of the di?culties of measuring the directly relevant variables without interfering with the control of the instrument. An inverse modelling approach is therefore proposed, in which the equations governing the sound generation mechanism of the clarinet
are employed in an optimisation procedure to determine the reed parameters from the mouthpiece pressure and volume ?ow signals. The underlying physical model captures most of the reed dynamics and is simple enough to be used in an inversion process. The optimisation procedure is ?rst tested by applying it to numerically synthesised signals, and then applied to mouthpiece signals acquired during notes blown by a human player. The proposed inverse modelling approach raises the possibility of revealing information about the way in which the embouchure-related reed parameters are controlled by the player, and also facilitates physics-based re-synthesis of clarinet sounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To develop real-time simulations of wind instruments, digital waveguides filters can be used as an efficient representation of the air column. Many aerophones are shaped as horns which can be approximated using conical sections. Therefore the derivation of conical waveguide filters is of special interest. When these filters are used in combination with a generalized reed excitation, several classes of wind instruments can be simulated. In this paper we present the methods for transforming a continuous description of conical tube segments to a discrete filter representation. The coupling of the reed model with the conical waveguide and a simplified model of the termination at the open end are described in the same way. It turns out that the complete lossless conical waveguide requires only one type of filter.Furthermore, we developed a digital reed excitation model, which is purely based on numerical integration methods, i.e., without the use of a look-up table.