77 resultados para ULTRA-LOW TEMPERATURE
Resumo:
In ultra-low data rate wireless sensor networks (WSNs) waking up just to listen to a beacon every superframe can be a major waste of energy. This study introduces MedMAC, a medium access protocol for ultra-low data rate WSNs that achieves significant energy efficiency through a novel synchronisation mechanism. The new draft IEEE 802.15.6 standard for body area networks includes a sub-class of applications such as medical implantable devices and long-term micro miniature sensors with ultra-low power requirements. It will be desirable for these devices to have 10 years or more of operation between battery changes, or to have average current requirements matched to energy harvesting technology. Simulation results are presented to show that the MedMAC allows nodes to maintain synchronisation to the network while sleeping through many beacons with a significant increase in energy efficiency during periods of particularly low data transfer. Results from a comparative analysis of MedMAC and IEEE 802.15.6 MAC show that MedMAC has superior efficiency with energy savings of between 25 and 87 for the presented scenarios. © 2011 The Institution of Engineering and Technology.
Resumo:
Robust, active, anatase titania films, 250 nm thick, are deposited onto glass at low temperatures, i.e., 2.0 for the photocatalytic mineralization of stearic acid. These films are typically 6.9 times more active than a sample of commercial self-cleaning glass, comprising a 15 nm layer of fitania deposited by CVD, mainly because they are much thicker and, therefore, absorb more of the incident UV light. The most active of the films tested comprised particles of P25, but lacked any significant physical robustness. Similar results, but much more quickly obtained, were generated using a photocatalyst- sensitive ink, based on the redox dye, resazurin, Rz. All fitania films tested, including those produced by magnetrom sputtering exhibited photo-induced superhydrophilicity. The possible future application of PAR-DG-MS for producing very active photocatalytic films on substrates not renowned for their high temperature stabilities, such as plastics, is noted. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
The impact of the preparation method on the activity and stability of gold supported on ceria-zirconia low temperature water-gas shift (WGS) catalysts have been investigated. The influence of the gold deposition method, nature of the gold precursor, nature of the washing solution, drying method, Ce: Zr ratio of the support and sulfation of the support have been evaluated. The highest activity catalysts were obtained using a support with a Ce: Zr mole ratio 1: 1, HAuCl4 as the gold precursor deposited via deposition precipitation using sodium carbonate as the precipitation agent and the catalyst washed with water or 0.1 M NH4OH solution. In addition, the drying used was found to be critical with drying under vacuum at room temperature found to be most effective.
Resumo:
Laser induced fluorescence images of a low temperature laser-produced plasma expanding into vacuum are presented and compared to a computer simulation. The complex nature of a plume expanding into background gas is highlighted, along with a potential means of simplifying the study of such systems.
Resumo:
A Langmuir probe has been used as a diagnostic of the temporally evolving electron component within a laser ablated Cu plasma expanding into vacuum, for an incident laser power density on target similar to that used for the pulsed laser deposition of thin films. Electron temperature data were obtained from the retarding region of the probe current/voltage (I/V) characteristic, which was also used to calculate an associated electron number density. Additionally, electron number density data were obtained from the saturation electron current region of the probe (I/V) characteristic. Electron number density data, extracted by the two different techniques, were observed to show the same temporal form, with measured absolute values agreeing to within a factor of 2. The Langmuir probe, in the saturation current region, has been shown for the first time to be a convenient diagnostic of the electron component within relatively low temperature laser ablated plasma plumes. (C) 1999 American Institute of Physics. [S0034-6748(99)01503-8].
Resumo:
Data on rock temperatures has previously been collected to characterise typical diurnal regimes, and more recently to describe short-term variability in extreme locations. However, there is also the case that little is understood concerning the impact of extreme events in otherwise temperate environments. Internal stone temperatures (5?cm) collected during the atypical cold extreme experienced, throughout the UK, in December 2010 show a difference between ambient air temperatures and aspect-related thermal differences, particularly concerning temperature lows and the influence of radiative heating. In this case, debris release was not visible; however, laboratory simulations have shown that under such conditions, surface loss does not necessarily negate the occurrence of internal stone modifications. This preparatory sequence of change demonstrates that surface loss is not the result of one process, but rather many operating over time to sufficiently decrease stone strength to facilitate obvious damage.