56 resultados para Twin coronet porphyrins
Resumo:
The liver fluke remains an economically significant parasite of livestock and is emerging as an important zoonotic infection of humans. The incidence of the disease has increased in the last few years, as a possible consequence of changes to the World's climate. Future predictions suggest that this trend is likely to continue. Allied to the changing pattern of disease, reports of resistance to triclabendazole (TCBZ) have appeared in the literature, although they do not all represent genuine cases of resistance. Nevertheless, any reports of resistance are a concern, because triclabendazole is the only drug that has high activity against the migratory and damaging juvenile stages of infection. How to deal with the twin problems (of increasing incidence and drug resistance) is the overall theme of the session on “Trematodes: Fasciola hepatica epidemiology and control” and of this review to introduce the session.
Greater knowledge of fluke epidemiology and population genetics will highlight those regions where surveillance is most required and indicate how quickly resistant populations of fluke may arise. Models of disease risk are becoming increasingly sophisticated and precise, with more refined data analysis programmes and Geographic Information Systems (GIS) data. Recent improvements have been made in our understanding of the action of triclabendazole and the ways in which flukes have become resistant to it. While microtubules are the most likely target for drug action, tubulin mutations do not seem to be involved in the resistance mechanism. Rather, upregulation of drug uptake and metabolism processes appear to be more important and the data relating to them will be discussed. The information may help in the design of new treatment strategies or pinpoint potential molecular markers for monitoring fluke populations. Advances in the identification of novel targets for drugs and vaccines will be made by the various “-omics” technologies that are now being applied to Fasciola. A major area of concern in the current control of fasciolosis is the lack of reliable tests for the diagnosis of drug (TCBZ) resistance. This has led to inaccurate reports of resistance, which is hindering successful disease management, as farmers may be encouraged to switch to less effective drugs. Progress with the development of a number of new diagnostic tests will be reviewed.
Resumo:
A variation of gravitational redshift, arising from stellar radius fluctuations, will introduce astrophysical noise into radial velocity measurements by shifting the centroid of the observed spectral lines. Shifting the centroid does not necessarily introduce line asymmetries. This is fundamentally different from other types of stellar jitter so far identified, which do result from line asymmetries. Furthermore, only a very small change in stellar radius, ˜0.01 per cent, is necessary to generate a gravitational redshift variation large enough to mask or mimic an Earth-twin. We explore possible mechanisms for stellar radius fluctuations in low-mass stars. Convective inhibition due to varying magnetic field strengths and the Wilson depression of starspots are both found to induce substantial gravitational redshift variations. Finally, we investigate a possible method for monitoring/correcting this newly identified potential source of jitter and comment on its impact for future exoplanet searches.
Resumo:
Two porphyrins, platinum(II) octaethylporphyrin (Pt-OEP) and palladium(II) octaethylporphyrin (Pd-OEP), are incorporated into a wide variety of different encapsulating matricies and tested as oxygen sensors, The excited state lifetimes of the two porphyrins are quite different, 0.091 ms for Pt-OEP and 0.99 ms for Pd-OEP, and Pt-OEP-based oxygen sensors are found to be much less sensitive than Pd-OEP-based ones to quenching by oxygen, Two major response characteristics of an oxygen sensor are (i) its sensitivity toward oxygen and (ii) its response and recovery times when exposed to an alternating atmosphere of nitrogen and air. The response characteristics of a rang of Pt-OEP, and Pd-OEP-based oxygen sensors were determined using cellulose acetate butyrate (CAB), poly(methyl methacrylate) (PMMA), and PMMA/CAB polymer blends as the encapsulating media. Pt-OEP and Pd-OEP oxygen sensors have better response characteristics (i.e., more sensitive and lower response and recovery times) when CAB is used as the encapsulating medium rather than PMMA. For both Pt-OEP- and Pd-OEP-based oxygen sensors, in either polymer, increasing the level of tributyl phosphate plasticizer improves the response characteristics of the final oxygen-sensitive film. Pt-OEP in different unplasticized PMMA/CAB blended films produced a range of oxygen sensors in which the response characteristics improved with increasing level of CAB present.
Resumo:
The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production. © 2012 Future Science Ltd.
Resumo:
Greylag geese (Anser anser) in the Guadalquivir Marshes (southwestern Spain) can be exposed to sources of inorganic pollution such as heavy metals and arsenic from mining activities or Pb shot used for hunting. We have sampled 270 fecal excreta in different areas of the marshes in 2001 to 2002 to evaluate the exposure to Pb, Zn, Cu, Mn, and As and to determine its relationship with soil ingestion and with the excretion of porphyrins and biliverdin as biomarkers. These effects and the histopathology of liver, kidney, and pancreas were also studied in 50 geese shot in 2002 to 2004. None of the geese had ingested Pb shot in the gizzard. This contrasts with earlier samplings before the ban of Pb shot for waterfowl hunting in 2001 and the removal of Pb shot in points of the Doñana National Park (Spain) in 1999 to 2000. The highest exposure through direct soil ingestion to Pb and other studied elements was observed in samples from Entremuros, the area of the Doñana Natural Park affected by the Aznalcóllar mine spill in 1998. Birds from Entremuros also more frequently showed mononuclear infiltrates in liver and kidney than birds from the unaffected areas, although other more specific lesions of Pb or Zn poisoning were not observed. The excretion of coproporphyrins, especially of the isomer I, was positively related to the fecal As concentration, and the ratio of coproporphyrin III/I was positively related to fecal Pb concentration. Biliary protoporphyrin IX concentration was also slightly related to hepatic Pb concentration. This study reflects biological effects on terrestrial animals by the mining pollution in Doñana that can be monitored with the simple noninvasive sampling of feces.
Resumo:
Colon-residing bacteria, such as vancomycin-resistant Enterococcus faecalis and Bacteroides fragilis, can cause a range of serious clinical infections. Photodynamic antimicrobial chemotherapy (PACT) may be a novel treatment option for these multidrug resistant organisms. The aim of this study was to formulate a Eudragit®-based drug delivery system, via hot melt extrusion (HME), for targeting colonic release of photosensitizer. The susceptibility of E. faecalis and B. fragilis to PACT mediated by methylene blue (MB), meso-tetra(N-methyl-4-pyridyl)porphine tetra-tosylate (TMP), or 5-aminolevulinic acid hexyl-ester (h-ALA) was determined, with tetrachlorodecaoxide (TCDO), an oxygen-releasing compound, added in some studies. Results show that, for MB, an average of 30% of the total drug load was released over a 6-h period. For TMP and h-ALA, these values were 50% and 16% respectively. No drug was released in the acidic media. Levels of E. faecalis and B. fragilis were reduced by up to 4.67 and 7.73 logs, respectively, on PACT exposure under anaerobic conditions, with increased kill associated with TCDO. With these formulations, photosensitizer release could potentially be targeted to the colon, and colon-residing pathogens killed by PACT. TCDO could be used in vivo to generate oxygen, which could significantly impact on the success of PACT in the clinic.
Resumo:
We address the generation, propagation, and application of multipartite continuous variable entanglement in a noisy environment. In particular, we focus our attention on the multimode entangled states achievable by second-order nonlinear crystals-i.e., coherent states of the SU(m,1) group-which provide a generalization of the twin-beam state of a bipartite system. The full inseparability in the ideal case is shown, whereas thresholds for separability are given for the tripartite case in the presence of noise. We find that entanglement of tripartite states is robust against thermal noise, both in the generation process and during propagation. We then consider coherent states of SU(m,1) as a resource for multipartite distribution of quantum information and analyze a specific protocol for telecloning, proving its optimality in the case of symmetric cloning of pure Gaussian states. We show that the proposed protocol also provides the first example of a completely asymmetric 1 -> m telecloning and derive explicitly the optimal relation among the different fidelities of the m clones. The effect of noise in the various stages of the protocol is taken into account, and the fidelities of the clones are analytically obtained as a function of the noise parameters. In turn, this permits the optimization of the telecloning protocol, including its adaptive modifications to the noisy environment. In the optimized scheme the clones' fidelity remains maximal even in the presence of losses (in the absence of thermal noise), for propagation times that diverge as the number of modes increases. In the optimization procedure the prominent role played by the location of the entanglement source is analyzed in details. Our results indicate that, when only losses are present, telecloning is a more effective way to distribute quantum information than direct transmission followed by local cloning.
Resumo:
We address the nonlocality of fully inseparable three-mode Gaussian states generated either by bilinear three-mode Hamiltonians or by a sequence of bilinear two-mode Hamiltonians. Two different tests revealing nonlocality are considered, in which the dichotomic Bell operator is represented by the displaced parity and by the pseudospin operator respectively. Three-mode states are also considered as a conditional source of two-mode non-Gaussian states, whose nonlocality properties are analysed. We found that the non-Gaussian character of the conditional states allows violation of Bell's inequalities (by parity and pseudospin tests) stronger than with a conventional twin-beam state. However, the non-Gaussian character is not sufficient to reveal nonlocality through a dichotomized quadrature measurement strategy.
Resumo:
Unlike other BCC metals, the plastic deformation of nanocrystalline Tantalum during compression is regulated by deformation twinning. Whether or not this twinning exhibits anisotropy was investigated through simulation of displacement-controlled nanoindentation test using molecular dynamics simulation. MD data was found to correlate well with the experimental data in terms of surface topography and hardness measurements. The mechanism of the transport of material was identified due to the formation and motion of prismatic dislocations loops (edge dislocations) belonging to the 1/2<111> type and <100> type Burgers vector family. Further analysis of crystal defects using a fully automated dislocation extraction algorithm (DXA) illuminated formation and migration of twin boundaries on the (110) and (111) orientation but not on the (010) orientation and most importantly after retraction all the dislocations disappeared on the (110) orientation suggesting twinning to dominate dislocation nucleation in driving plasticity in tantalum. A significant finding was that the maximum shear stress (critical Tresca stress) in the deformation zone exceeded the theoretical shear strength of tantalum (Shear modulus/ 2π~10.03 GPa) on the (010) orientation but was lower than it on the (110) and the (111) orientations. In light to this, the conventional lore of assuming the maximum shear stress being 0.465 times the mean contact pressure was found to break down at atomic scale.
Resumo:
Two recent scanning probe techniques were applied to investigate the bipolar twin state of 4-iodo-4'-nitrobiphenyl (INBP) crystals. Solution grown crystals of INBP show typically a morphology which does not express that of a mono-domain polar structure (Fdd2, mm2). From previous X-ray diffraction a twinning volume ratio of similar to 70 : 30 is now explained by two unipolar domains (Flack parameter: 0.075(29)) of opposite orientation of the molecular dipoles, joined by a transition zone showing a width of similar to 140 mm. Scanning pyroelectric microscopy (SPEM) demonstrates a continuous transition of the polarization P from +P into -P across the zone. Application of piezoelectric force microscopy (PFM) confirms unipolar alignment of INBP molecules down to a resolution of similar to 20 nm. A previously proposed real structure for INBP crystals built from lamellae with antiparallel alignment is thus rejected. Anomalous X-ray scattering was used to determine the absolute molecular orientation in the two domains. End faces of the polar axis 2 are thus made up by NO2 groups. Using a previously determined negative pyroelectric coefficient pc leads to a confirmation also by a SPEM analysis. Calculated values for functional group interactions (D...A), (A...A), (D...D) and the stochastic theory of polarity formation allow us to predict that NO2 groups should terminate corresponding faces. Following the present analysis, INBP may represent a first example undergoing dipole reversal upon growth to end up in a bipolar state.
Resumo:
A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth—including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as “Uncertain” or “Special” as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity. Key Words: Martian environments—Mars astrobiology—Extreme environment microbiology—Planetary protection—Exploration resources. Astrobiology 14, 887–968.
Resumo:
Grinding solid reagents under solvent-free or low-solvent conditions (mechanochemistry) is emerging as a general synthetic technique which is an alternative to conventional solvent-intensive methods. However, it is essential to find ways to scale-up this type of synthesis if its promise of cleaner manufacturing is to be realised. Here, we demonstrate the use of twin screw and single screw extruders for the continuous synthesis of various metal complexes, including Ni(salen), Ni(NCS)(2)(PPh3)(2) as well as the commercially important metal organic frameworks (MOFs) Cu-3(BTC)(2) (HKUST-1), Zn(2-methylimidazolate)(2) (ZIF-8, MAF-4) and Al(fumarate)(OH). Notably, Al(fumarate)(OH) has not previously been synthesised mechanochemically. Quantitative conversions occur to give products at kg h(-1) rates which, after activation, exhibit surface areas and pore volumes equivalent to those of materials produced by conventional solvent-based methods. Some reactions can be performed either under completely solvent-free conditions whereas others require the addition of small amounts of solvent (typically 3-4 mol equivalents). Continuous neat melt phase synthesis is also successfully demonstrated by both twin screw and single screw extrusion for ZIF-8. The latter technique provided ZIF-8 at 4 kg h(-1). The space time yields (STYs) for these methods of up to 144 x 10(3) kg per m(3) per day are orders of magnitude greater than STYs for other methods of making MOFs. Extrusion methods clearly enable scaling of mechanochemical and melt phase synthesis under solvent-free or low-solvent conditions, and may also be applied in synthesis more generally.
Resumo:
While investigating the destruction of the cyanobacterial hepatotoxin microcystin-LR in the presence of phycocyanin pigment via semiconductor photocatalysis, it became apparent that the pigment was catalysing the toxin decomposition. The mechanism of this process in terms of phycocyanin acting as a photo-oxygenation sensitizer via singlet oxygen and superoxide attack is explored. The absorption and fluorescence spectra of phycocyanin have been obtained and data on the properties of the excited state calculated. The established photo-oxygenation sensitizer rose bengal was also used as a catalyst for the photolytic decomposition of microcystin-LR to help elucidate the decomposition mechanism.