53 resultados para Turning Points


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use high spatial resolution observations and numerical simulations to study the velocity distribution of solar photospheric magnetic bright points. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope, while the numerical simulations were undertaken with the MURaM code for average magnetic fields of 200 G and 400 G. We implemented an automated bright point detection and tracking algorithm on the data set and studied the subsequent velocity characteristics of over 6000 structures, finding an average velocity of approximately 1 km s(-1), with maximum values of 7 km s(-1). Furthermore, merging magnetic bright points were found to have considerably higher velocities, and significantly longer lifetimes, than isolated structures. By implementing a new and novel technique, we were able to estimate the background magnetic flux of our observational data, which is consistent with a field strength of 400 G.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from the premise that human communication is predicated on translational phenomena, this paper applies theoretical insights and practical findings from Translation Studies to a critique of Natural Semantic Metalanguage (NSM), a theory of semantic analysis developed by Anna Wierzbicka. Key tenets of NSM, i.e. (1) culture-specificity of complex concepts; (2) the existence of a small set of universal semantic primes; and (3) definition by reductive paraphrase, are discussed critically with reference to the notions of untranslatability, equivalence, and intra-lingual translation, respectively. It is argued that a broad spectrum of research and theoretical reflection in Translation Studies may successfully feed into the study of cognition, meaning, language, and communication. The interdisciplinary exchange between Translation Studies and linguistics may be properly balanced, with the former not only being informed by but also informing and interrogating the latter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon carbide (SiC) is a material of great technological interest for engineering applications concerning hostile environments where silicon-based components cannot work (beyond 623 K). Single point diamond turning (SPDT) has remained a superior and viable method to harness process efficiency and freeform shapes on this harder material. However, it is extremely difficult to machine this ceramic consistently in the ductile regime due to sudden and rapid tool wear. It thus becomes non trivial to develop an accurate understanding of tool wear mechanism during SPDT of SiC in order to identify measures to suppress wear to minimize operational cost.

In this paper, molecular dynamics (MD) simulation has been deployed with a realistic analytical bond order potential (ABOP) formalism based potential energy function to understand tool wear mechanism during single point diamond turning of SiC. The most significant result was obtained using the radial distribution function which suggests graphitization of diamond tool during the machining process. This phenomenon occurs due to the abrasive processes between these two ultra hard materials. The abrasive action results in locally high temperature which compounds with the massive cutting forces leading to sp3–sp2 order–disorder transition of diamond tool. This represents the root cause of tool wear during SPDT operation of cubic SiC. Further testing led to the development of a novel method for quantitative assessment of the progression of diamond tool wear from MD simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this experimental study, diamond turning of single crystal 6H-SiC was performed at a cutting speed of 1 m/s on an ultra-precision diamond turning machine (Moore Nanotech 350 UPL) to elucidate the microscopic origin of ductile-regime machining. Distilled water (pH value 7) was used as a preferred coolant during the course of machining in order to improve the tribological performance. A high magnification scanning electron microscope (SEM FIB- FEI Quanta 3D FEG) was used to examine the cutting tool before and after the machining. A surface finish of Ra=9.2 nm, better than any previously reported value on SiC was obtained. Also, tremendously high cutting resistance was offered by SiC resulting in the observation of significant wear marks on the cutting tool just after 1 km of cutting length. It was found out through a DXR Raman microscope that similar to other classical brittle materials (silicon, germanium, etc.) an occurrence of brittle-ductile transition is responsible for the ductile-regime machining of 6H-SiC. It has also been demonstrated that the structural phase transformations associated with the diamond turning of brittle materials which are normally considered as a prerequisite to ductile-regime machining, may not be observed during ductile-regime machining of polycrystalline materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hard turning (HT) is a material removal process employing a combination of a single point cutting tool and high speeds to machine hard ferrous alloys which exhibit hardness values over 45 HRC. In this paper, a surface defect machining (SDM) method for HT is proposed which harnesses the combined advantages of porosity machining and pulsed laser pre-treatment processing. From previous experimental work, this was shown to provide better controllability of the process and improved quality of the machined surface. While the experiments showed promising results, a comprehensive understanding of this new technique could only be achieved through a rigorous, in depth theoretical analysis. Therefore, an assessment of the SDM technique was carried out using both finite element method (FEM) and molecular dynamics (MD) simulations.
FEM modelling was used to compare the conventional HT of AISI 4340 steel (52 HRC) using an Al2O3 insert with the proposed SDM method. The simulations showed very good agreement with the previously published experimental results. Compared to conventional HT, SDM provided favourable machining outcomes, such as reduced shear plane angle, reduced average cutting forces, improved surface roughness, lower residual stresses on the machined surface, reduced tool–chip interface contact length and increased chip flow velocity. Furthermore, a scientific explanation of the improved surface finish was revealed using a state-of-the-art MD simulation model which suggested that during SDM, a combination of both the cutting action and rough polishing action help improve the machined surface finish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Bright points (BPs) are small-scale, magnetic features ubiquitous across the solar surface. Previously, we have observed and noted their properties for quiet Sun regions. Here, we determine the dynamic properties of BPs using simultaneous quiet Sun and active region data.

Aims. The aim of this paper is to compare the properties of BPs in both active and quiet Sun regions and to determine any difference in the dynamics and general properties of BPs as a result of the varying magnetic activity within these two regions.

Methods. High spatial and temporal resolution G-band observations of active region AR11372 were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope. Three subfields of varying polarity and magnetic flux density were selected with the aid of magnetograms obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Bright points within these subfields were subsequently tracked and analysed.

Results. It is found that BPs within active regions display attenuated velocity distributions with an average horizontal velocity of ~0.6 km s-1, compared to the quiet region which had an average velocity of 0.9 km s-1. Active region BPs are also ~21% larger than quiet region BPs and have longer average lifetimes (~132 s) than their quiet region counterparts (88 s). No preferential flow directions are observed within the active region subfields. The diffusion index (γ) is estimated at ~1.2 for the three regions.

Conclusions. We confirm that the dynamic properties of BPs arise predominately from convective motions. The presence of stronger field strengths within active regions is the likely reason behind the varying properties observed. We believe that larger amounts of magnetic flux will attenuate BP velocities by a combination of restricting motion within the intergranular lanes and by increasing the number of stagnation points produced by inhibited convection. Larger BPs are found in regions of higher magnetic flux density and we believe that lifetimes increase in active regions as the magnetic flux stabilises the BPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motor points of the skeletal muscles, mainly of interest to anatomists and physiologists, have recently attracted much attention from researchers in the field of functional electrical stimulation. The muscle motor point has been defined as the entry point of the motor nerve branch into the epimysium of the muscle belly. Anatomists have pointed out that many muscles in the limbs have multiple motor points. Knowledge of the location of nerve branches and terminal nerve entry points facilitates the exact insertion and the suitable selection of the number of electrodes required for each muscle for functional electrical stimulation. The present work therefore aimed to describe the number, location, and distribution of motor points in the human forearm muscles to obtain optimal hand function in many clinical situations. Twenty three adult human cadaveric forearms were dissected. The numbers of primary nerves and motor points for each muscle were tabulated. The mean numbers and the standard deviation were calculated and grouped in tables. Data analyses were performed with the use of a statistical analysis package (SPSS 13.0). The proximal third of the muscle was the usual part of the muscle that received the motor points. Most of the forearm muscles were innervated from the lateral side and deep surface of the muscle. The information in this study may also be usefully applied in selective denervation procedures to balance muscles in spastic upper limbs. Copyright © 2007 Via Medica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, 39 sets of hard turning (HT) experimental trials were performed on a Mori-Seiki SL-25Y (4-axis) computer numerical controlled (CNC) lathe to study the effect of cutting parameters in influencing the machined surface roughness. In all the trials, AISI 4340 steel workpiece (hardened up to 69 HRC) was machined with a commercially available CBN insert (Warren Tooling Limited, UK) under dry conditions. The surface topography of the machined samples was examined by using a white light interferometer and a reconfirmation of measurement was done using a Form Talysurf. The machining outcome was used as an input to develop various regression models to predict the average machined surface roughness on this material. Three regression models - Multiple regression, Random Forest, and Quantile regression were applied to the experimental outcomes. To the best of the authors’ knowledge, this paper is the first to apply Random Forest or Quantile regression techniques to the machining domain. The performance of these models was compared to each other to ascertain how feed, depth of cut, and spindle speed affect surface roughness and finally to obtain a mathematical equation correlating these variables. It was concluded that the random forest regression model is a superior choice over multiple regression models for prediction of surface roughness during machining of AISI 4340 steel (69 HRC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous research endeavors on hard turning (HT), both on machine tools and cutting tools, have made the previously reported daunting limits easily attainable in the modern scenario. This presents an opportunity for a systematic investigation on finding the current attainable limits of hard turning using a CNC turret lathe. Accordingly, this study aims to contribute to the existing literature by providing the latest experimental results of hard turning of AISI 4340 steel (69 HRC) using a CBN cutting tool. An orthogonal array was developed using a set of judiciously chosen cutting parameters. Subsequently, the longitudinal turning trials were carried out in accordance with a well-designed full factorial-based Taguchi matrix. The speculation indeed proved correct as a mirror finished optical quality machined surface (an average surface roughness value of 45 nm) was achieved by the conventional cutting method. Furthermore, Signal-to-noise (S/N) ratio analysis, Analysis of variance (ANOVA), and Multiple regression analysis were carried out on the experimental datasets to assert the dominance of each machining variable in dictating the machined surface roughness and to optimize the machining parameters. One of the key findings was that when feed rate during hard turning approaches very low (about 0.02mm/rev), it could alone be most significant (99.16%) parameter in influencing the machined surface roughness (Ra). This has, however also been shown that low feed rate results in high tool wear, so the selection of machining parameters for carrying out hard turning must be governed by a trade-off between the cost and quality considerations.