133 resultados para Trapped interacting atoms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from a Lagrangian mean-field theory, a set of time-dependent tight-binding equations is derived to describe dynamically and self-consistently an interacting system of quantum electrons and classical nuclei. These equations conserve norm, total energy and total momentum. A comparison with other tight-binding models is made. A previous tight-binding result for forces on atoms in the presence of electrical current flow is generalized to the time-dependent domain and is taken beyond the limit of local charge neutrality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed at JPL to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections. The ions are produced by the JPL HCI Facility and passed through a neutral-gas target cell. The product charge states are analyzed by a retarding potential difference technique. Results are made absolute by measuring target pressure, and incident and product ion currents. X-rays emitted from the product ions are detected with a Ge solid-state detector having a resolution of approximately 100 eV. X-ray astronomy has taken major steps forward with the recent launch of the high-resolution satellites Chandra and Newton. The cross sections reported herein are essential for the development of the solar wind comet interaction models inspired by these observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A realistic model of the dipole radiation forces in transverse Doppler cooling (with a s+-s- laser configuration) of an atomic beam of group 13 elements is studied within the quantum-kinetic equation framework. The full energy level sub-structure for such an atom with I = 0 (such as 66Ga) is analysed. Two cooling strategies are investigated; the first involving the 2P3/2 ? 2D5/2 transition and the second a dual laser cooling experiment involving transitions 2P1/2 and 2P3/2 ? 2S1/2. The latter scheme creates a velocity-independent dark-state resonance that inhibits a steady-state dipole cooling force. However, time-dependent calculations show that transient cooling forces are present that could be exploited for laser cooling purposes in pulsed laser fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the modulational instability of nonlinearly interacting two-dimensional waves in deep water, which are described by a pair of two-dimensional coupled nonlinear Schrodinger equations. We derive a nonlinear dispersion relation. The latter is numerically analyzed to obtain the regions and the associated growth rates of the modulational instability. Furthermore, we follow the long term evolution of the latter by means of computer simulations of the governing nonlinear equations and demonstrate the formation of localized coherent wave envelopes. Our results should be useful for understanding the formation and nonlinear propagation characteristics of large-amplitude freak waves in deep water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-sequential processes in the multiple ionization of Xe and Xe+ targets subject to intense femtosecond laser pulses have been investigated. A precise ratio has been determined for the direct comparison of ionization using circular and linear polarized fields. Suppression of non-sequential effects where an ionic target is compared to a neutral atom target has been confirmed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hyperthermal hydrogen/deuterium atom beam source with a defined energy distribution has been employed to investigate the kinetically induced electron emission from noble metal surfaces. A monotonous increase in the emission yield was found for energies between 15 and 200 eV. This, along with an observed isotope effect, is described in terms of a model based on Boltzmann type electron energy distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen ions (H+, H-2(+) and H-3(+)) are produced in a magnetically confined inductively coupled radio frequency plasma. Ions are accelerated in the plasma boundary sheath potential, of several hundred volts, in front of a biased metal electrode immersed in the plasma. Backscattered hyperthermal hydrogen atoms are investigated by optical emission spectroscopy and an energy-resolved mass spectrometer. Ionisation of fast neutrals through electron stripping of atoms in the plasma allows energy analysis of the resulting ions. Thereby, the energy distribution function of the hyperthermal atoms can be deduced. The energy spectra can be explained as a superposition of individual spectra of the various ion species. The measured spectra also shows contributions of negative ions created at the electrode surface. In addition to experimental measurements, simulations of the neutral flux of backscattered atoms are carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the observation of fast hydrogen atoms in a capacitively coupled RF reactor by optical emission spectroscopy. For the analysis we use the prominent H-alpha emission line of atomic hydrogen in combination with other lines from molecular hydrogen and argon. Several chaxacteristic emission structures can be identified. One of these structures is related to fast hydrogen atoms traveling from the surface of the powered electrode to the plasma bulk. From the appearance time within the RF period we conclude that this feature originates from ion bombardment of the electrode surface. Measured pressure dependencies and a simple model for the ion dynamics support this assumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We find a coupling-strength configuration for a linear chain of N spins which gives rise to simultaneous multiple Bell states. We suggest a way such an interesting entanglement pattern can be used in order to distribute maximally entangled channels to remote locations and generate multipartite entanglement with a minimum-control approach. Our proposal thus provides a way to achieve the core resources in distributed information processing. The schemes we describe can be efficiently tested in chains of coupled cavities interacting with three-level atoms.