113 resultados para Transmembrane Glycoprotein


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY A study was carried out to investigate whether the action of triclabendazole sulphoxide (TCBZ.SO) against the liver fluke, Fasciola hepatica is altered by inhibition of P-glycoprotein (Pgp)-linked drug efflux pumps. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible fluke isolates were used for this in vitro study and the Pgp inhibitor selected was R(+)-verapamil [R(+)-VPL]. For experiments with the Oberon isolate, flukes were incubated for 24 h with either R(+)-VPL (1×10-4 m) on its own, TCBZ.SO (15 µg mL-1) alone, a combination of R(+)-VPL (1×10-4 m) plus TCBZ.SO (15 µg mL-1), TCBZ.SO (50 µg mL-1) on its own, or a combination of TCBZ.SO (50 µg mL-1) plus R(+)-VPL (1×10-4 m). They were also incubated in TCBZ.SO (50 µg mL-1) alone or in combination with R(+)-VPL (1×10-4 m) until they became inactive; and in TCBZ.SO (50 µg mL-1) alone for a time to match that of the combination inactivity time. Flukes from the Cullompton isolate were treated with either TCBZ.SO (50 µg mL-1) alone or in combination with R(+)-VPL (1×10-4 m) until they became inactive, or with TCBZ.SO (50 µg mL-1) alone time-matched to the combination inactivity time. Morphological changes resulting from drug treatment and following Pgp inhibition were assessed by means of scanning electron microscopy. Incubation in R(+)-VPL alone had a minimal effect on either isolate. TCBZ.SO treatment had a relatively greater impact on the TCBZ-susceptible Cullompton isolate. When R(+)-VPL was combined with TCBZ.SO in the incubation medium, however, the surface disruption to both isolates was more severe than that seen after TCBZ.SO treatment alone; also, the time taken to reach inactivity was shorter. More significantly, though, the potentiation of drug activity was greater in the Oberon isolate; also, it was more distinct at the higher concentration of TCBZ.SO. So, the Oberon isolate appears to be particularly sensitive to efflux pump inhibition. The results of this study suggest that enhanced drug efflux in the Oberon isolate may be involved in the mechanism of resistance to TCBZ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by the inhibition of P-glycoprotein (Pgp)-linked drug efflux pumps. The Sligo TCBZ-resistant and Cullompton TCBZ-susceptible fluke isolates were used for these experiments and the Pgp inhibitor selected was R(+)-verapamil [R-VPL]. In the first experiment, flukes were initially incubated for 2 h in R-VPL (100 µM), then incubated for a further 22 h in R-VPL+triclabendazole sulphoxide (TCBZ.SO) (50 µg/ml, or 0.1327 µM). For controls, flukes were incubated for 24 h in R-VPL and TCBZ.SO on their own. In a second experiment, flukes were removed from the incubation media following cessation of movement. In the third experiment, Sligo flukes were incubated in lower concentrations of R-VPL (10 µM) and TCBZ.SO (15 µg/ml, or 0.0398 µM). Morphological changes resulting from drug treatment and following Pgp inhibition were assessed by means of scanning electron microscopy. Incubation in R-VPL alone had minimal effect on either isolate. After treatment with TCBZ.SO alone, there was greater surface disruption to the Cullompton than Sligo isolate. However, combined treatment of R-VPL+TCBZ.SO led to more severe surface changes to the Sligo isolate than with TCBZ.SO on its own; this potentiation of drug activity was not seen with the Cullompton isolate. The phenomenon was evident at both concentrations of TCBZ.SO. Inclusion of R-VPL in the incubation medium also reduced the time taken for the flukes to become inactive; again, this effect was more distinct with the Sligo isolate. The results of this study support the concept of altered drug efflux in TCBZ-resistant flukes and indicate that drug transporters may play a role in the development of drug resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of ABCB1 (P-glycoprotein/Pgp) in AML was investigated. In a historical cohort with Pgp and transcriptional regulator expression profiling data available (n=141), FOXO1 correlated with Pgp protein expression. This was confirmed in an independent cohort (n=204). Down-regulation (siRNA) or hyperactivation (nicotinamide) of FOXO1 led to corresponding changes in Pgp. Low FOXO1 expression correlated with FLT3-ITDs (p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by inhibition of P-glycoprotein (Pgp)-linked drug efflux pumps. The Sligo TCBZ-resistant fluke isolate was used for these experiments and the Pgp inhibitor selected was R(+)-verapamil [R(+)-VPL]. In the first experiment, flukes were initially incubated for 2 h in R(+)-VPL (100 μ m), then incubated in R(+)-VPL+triclabendazole sulphoxide (TCBZ.SO) (50 μg mL-1, or 133·1 μ m) until flukes ceased movement (at 9 h post-treatment). In a second experiment, flukes were incubated in TCBZ.SO alone and removed from the incubation medium following cessation of motility (after 15 h). In the third experiment, flukes were incubated for 24 h in R(+)-VPL on its own. Changes to the testis tubules and vitelline follicles following drug treatment and following Pgp inhibition were assessed by means of light microscope histology and transmission electron microscopy. Incubation of the Sligo isolate in either R(+)-VPL or TCBZ.SO on their own had a limited impact on the morphology of the two tissues. Greater disruption was observed when the drugs were combined, in terms of the block in development of the spermatogenic and vitelline cells and the apoptotic breakdown of the remaining cells. Sperm formation was severely affected and abnormal. Large spaces appeared in the vitelline follicles and synthesis of shell protein was disrupted. The results of this study support the concept of altered drug efflux in TCBZ-resistant flukes and indicate that drug transporters may play a role in the development of drug resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Heart failure (HF) prevention strategies require biomarkers that identify disease manifestation. Increases in B-type natriuretic peptide (BNP) correlate with increased risk of cardiovascular events and HF development. We hypothesize that coronary sinus serum from a high BNP hypertensive population reflects an active pathological process and can be used for biomarker exploration. Our aim was to discover differentially expressed disease-associated proteins that identify patients with ventricular dysfunction and HF.

METHODS AND RESULTS: Coronary sinus serum from 11 asymptomatic, hypertensive patients underwent quantitative differential protein expression analysis by 2-dimensional difference gel electrophoresis. Proteins were identified using mass spectrometry and then studied by enzyme-linked immunosorbent assay in sera from 40 asymptomatic, hypertensive patients and 105 patients across the spectrum of ventricular dysfunction (32 asymptomatic left ventricular diastolic dysfunction, 26 diastolic HF, and 47 systolic HF patients). Leucine-rich α2-glycoprotein (LRG) was consistently overexpressed in high BNP serum. LRG levels correlate significantly with BNP in hypertensive, asymptomatic left ventricular diastolic dysfunction, diastolic HF, and systolic HF patient groups (P≤0.05). LRG levels were able to identify HF independent of BNP. LRG correlates with coronary sinus serum levels of tumor necrosis factor-α (P=0.009) and interleukin-6 (P=0.021). LRG is expressed in myocardial tissue and correlates with transforming growth factor-βR1 (P<0.001) and α-smooth muscle actin (P=0.025) expression.

CONCLUSIONS: LRG was identified as a serum biomarker that accurately identifies patients with HF. Multivariable modeling confirmed that LRG is a stronger identifier of HF than BNP and this is independent of age, sex, creatinine, ischemia, β-blocker therapy, and BNP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our previously reported gene atlasing of schistosome tissues revealed transcripts that were highly enriched in the digestive tract of Schistosoma mansoni. From these, we selected two candidates, Sm-LAMP and Sm-NPC2 for testing as vaccine targets. The two molecules were selected on the basis of relatively high expression in the gastrodermis, their potentially important biological function, divergence from homologous molecules of the host and possible apical membrane expression in the gastrodermis. Bacterially expressed recombinant peptides corresponding to regions excluding trans-membrane domains of the selected vaccine targets were used in blinded vaccine trials in CBA mice using alum-CpG as adjuvant. Vaccine trials using the recombinant insoluble Sm-LAMP protein showed 16-25% significant reduction in total worm burden. Faecal egg count reduction was 52% and 60% in two trials, respectively, with similar results for the solubly expressed protein. Liver egg burden was reduced significantly (20% and 38%) with an insoluble recombinant Sm-LAMP in two trials, but not with the soluble recombinant form. Parasite fecundity was not affected by either Sm-LAMP protein preparations in the trials. It is concluded that Sm-LAMP may provide limited protection towards S. mansoni infections but could be used in combination with other vaccine candidates, to provide more comprehensive protection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TRPM8 represents an ion channel activated by cold temperatures and cooling agents, such as menthol, that underlies the cold-induced excitation of sensory neurons. Interestingly, the only human tissue outside the peripheral nervous system, in which the expression of TRPM8 transcripts has been detected at high levels, is the prostate, a tissue not exposed to any essential temperature variations. Here we show that the TRPM8 cloned from human prostate and heterologously expressed in HEK-293 cells is regulated by the Ca(2+)-independent phospholipase A(2) (iPLA(2)) signaling pathway with its end products, lysophospholipids (LPLs), acting as its endogenous ligands. LPLs induce prominent prolongation of TRPM8 channel openings that are hardly detectable with other stimuli (e.g. cold, menthol, and depolarization) and that account for more than 90% of the total channel open time. Down-regulation of iPLA(2) resulted in a strong inhibition of TRPM8-mediated functional responses and abolished channel activation. The action of LPLs on TRPM8 channels involved either changes in the local lipid bilayer tension or interaction with the critical determinant(s) in the transmembrane channel core. Based on this, we propose a novel concept of TRPM8 regulation with the involvement of iPLA(2) stimulation. This mechanism employs chemical rather than physical (temperature change) signaling and thus may be the main regulator of TRPM8 activation in organs not exposed to any essential temperature variations, as in the prostate gland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

beta1,4-Galactosyltransferase V (beta1,4GalT V; EC 2.4.1.38) is considered to be very important in glioma for expressing transformation-related highly branched N-glycans. Recently, we have characterized beta1,4GalT V as a positive growth regulator in several glioma cell lines. However, the role of beta1,4GalT V in glioma therapy has not been clearly reported. In this study, interfering with the expression of beta1,4GalT V by its antisense cDNA in SHG44 human glioma cells markedly promoted apoptosis induced by etoposide and the activation of caspases as well as processing of Bid and expression of Bax and Bak. Conversely, the ectopic expression of beta1,4GalT V attenuated the apoptotic effect of etoposide on SHG44 cells. In addition, both the beta1,4GalT V transcription and the binding of total or membrane glycoprotein with Ricinus communis agglutinin-I (RCA-I) were partially reduced in etoposide-treated SHG44 cells, correlated well with a decreased level of Sp1 that has been identified as an activator of beta1,4GalT V transcription. Collectively, our results suggest that the down-regulation of beta1,4GalT V expression plays an important role in etoposide-induced apoptosis and could be mediated by a decreasing level of Sp1 in SHG44 cells, indicating that inhibitors of beta1,4GalT V may enhance the therapeutic efficiency of etoposide for malignant glioma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: A number of cellular proteins, including P-glycoprotein (P-gp) and Multiple drug Resistance Protein (MRP-1), act as drug efflux pumps and are important in the resistance of many cancers to chemotherapy. We previously reported that a small number of NSAIDs could inhibit the activity of MRP-1. Materials and Methods: We chose sulindac as a candidate agent for further investigation as it has the most favourable efficacy and toxicity profile of the agents available for a potential specific MRP-1 inhibitor. NCI H460 cells expressed MRP-1 protein (by Western blot) and also the toxicity, of doxorubicin (a substrate of MRP-1) could be potentiated in this line using non-toxic concentrations of the MRP-1 substrate/inhibitor sulindac. These cells were implanted in nude mice and the animals divided into various groups which were administered doxorubicin and/or sulindac. Results: Sulindac was shown to significantly potentiate the tumour growth inhibitor activity of doxorubicin in this MRP-1-overexpressing human tumour xenograft model. Conclusion: Sulindac may be clinically useful as an inhibitor of the MRP-1 cancer resistance mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A melphalan-resistant variant (Roswell Park Memorial Institute (RPMI)-2650M1) and a paclitaxel-resistant variant (RPMI-1650Tx) of the drug-sensitive human nasal carcinoma cell line, RPMI-2650. were established. The multidrug resistance (MDR) phenotype in the RPMI-2650Tx appeared to be P-glycoprotein (PgP)-mediated. Overexpression of multidrug resistant protein (MRP) family members was observed in the RPMI-2650M1 cells, which were also much more invasive in vitro than the parental cell line or the paclitaxel-resistant variant. Increased expression of alpha (2), alpha (5), alpha (6), beta (1) and beta (4) integrin subunits, decreased expression of alpha (4) integrin subunit, stronger adhesion to collagen type IV, laminin, fibronectin and matrigel, increased expression of MMP-2 and MMP-9 and significant motility compared with the parental cells were observed, along with a high invasiveness in the RPMI-7650M1 cells. Decreased expression of the alpha (2) integrin subunit, decreased attachment to collagen type IV, absence of cytokeratin 18 expression, no detectable expression of gelatin-degrading proteases and poor motility may be associated with the non-invasiveness of the RPMI-2650Tx variant. These results suggest that melphalan exposure can result in not only a MDR phenotype. but could also make cancer cells more invasive, whereas paclitaxel exposure resulted in MDR without increasing the in vitro invasiveness in the RPMI-2650 cells. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protease-activated receptors [PARs] are a family of G-protein-coupled seven-transmembrane domain receptors that are activated by proteolytic cleavage of their amino-terminal exodomain. To characterize the cleavage rate of human PAR-1 / 2 / 3 and 4 by trypsin and thrombin, four synthetic quenched-fluorescent peptide substrates have been synthesized. Each substrate consisted of a ten-residue peptide spanning the receptor activation cleavage site and using progress-curve kinetics, k(cat)/K-m values were determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteopontin (OPN) is a phosphorylated glycoprotein that binds to alpha v-containing integrins and is important in malignant transformation and cancer. Previously, we have utilized suppressive subtractive hybridization between mRNAs isolated from the Rama 37 (R37) rat mammary cell line and a subclone rendered invasive and metastatic by stable transfection with an expression vector for OPN to identify RAN GTPase (RAN) as the most overexpressed gene, in addition to that of OPN. Here we show that transfection of noninvasive R37 cells with an expression vector for RAN resulted in increased anchorage-independent growth, cell attachment and invasion through Matrigel in vitro, and metastasis in syngeneic rats. This induction of a malignant phenotype was induced independently of the expression of OPN, and was reversed by specifically reducing the expression of RAN using small-interfering RNAs. By using a combination of mutant protein and inhibitors, it was found that RAN signal transduction occurred through the c-Met receptor and PI3 kinase. This study therefore identifies RAN as a novel effector of OPN-mediated malignant transformation and some of its downstream signaling events in a mammary epithelial model of cancer invasion/metastasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-drug resistance (MDR) may compromise the successful management of haematological malignancies, impairing the effectiveness of chemotherapy. The P-glycoprotein (P-gp) drug efflux pump, encoded by the gene ABCB1 (MDR1), is the most widely studied component in MDR. A single nucleotide polymorphism (SNP) has been identified within ABCB1, rs1045642 (C3435T), which may alter P-gp substrate specificity and have an impact on the effectiveness of treatment, and hence overall survival (OS). We estimated the frequency of this SNP in the Northern Irish population and investigated its impact on the OS of patients with plasma cell myeloma (PCM). There was no significant difference in the frequency of rs1045642 between the PCM cohort and an age- and gender-matched control population. Findings within the PCM cohort suggest that rs1045642 genotype influences OS (p = 2 x 10(-2)). If confirmed in larger studies, these results suggest that genotyping rs1045642 may be a useful predictor of outcome in PCM and could indicate modified treatment modalities in certain individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rheologically structured vehicle (RSV) gels were developed as delivery systems for vaginal mucosal vaccination with an HIV-1 envelope glycoprotein (CN54gp140). RSVs comprised a mucoadhesive matrix forming and vaginal fluid absorbing polymer. The mucoadhesive and rheological properties of the RSVs were evaluated in vitro, and the distribution, antigenicity and release of CN54gp140 were analysed by ELISA. CN54gp140 was uniformly distributed within the RSVs and continuously released in vitro in an antigenically intact form over 24 h. Vaginal administration to rabbits induced specific serum IgG, and IgG and IgA in genital tract secretions. The RSVs are a viable delivery modality for vaginal immunization.