103 resultados para Toxins.
Resumo:
There has been a long history of defining T cell epitopes to track viral immunity and to design rational vaccines, yet few data of this type exist for bacterial infections. Bacillus anthracis, the causative agent of anthrax, is both an endemic pathogen in many regions and a potential biological warfare threat. T cell immunity in naturally infected anthrax patients has not previously been characterized, which is surprising given concern about the ability of anthrax toxins to subvert or ablate adaptive immunity. We investigated CD4 T cell responses in patients from the Kayseri region of Turkey who were previously infected with cutaneous anthrax. Responses to B. anthracis protective Ag and lethal factor (LF) were investigated at the protein, domain, and epitope level. Several years after antibiotic-treated anthrax infection, strong T cell memory was detectable, with no evidence of the expected impairment in specific immunity. Although serological responses to existing anthrax vaccines focus primarily on protective Ag, the major target of T cell immunity in infected individuals and anthrax-vaccinated donors was LF, notably domain IV. Some of these anthrax epitopes showed broad binding to several HLA class alleles, but others were more constrained in their HLA binding patterns. Of specific CD4 T cell epitopes targeted within LF domain IV, one is preferentially seen in the context of bacterial infection, as opposed to vaccination, suggesting that studies of this type will be important in understanding how the human immune system confronts serious bacterial infection.
Resumo:
The discovery that the hypotensive sequela of envenomation by the South American viper, Bothrops jararaca, was mediated by peptides, represented a milestone in drug discovery research that led to the introduction of ACE inhibitors. These bradykinin-potentiating peptides (BPPs) have been found in the venoms of many species of viper and molecular cloning of biosynthetic precursors has revealed that each encodes several different BPPs in tandem with a single copy of a C-type natriuretic peptide (CNP) located at the C-terminus. Venoms of the African forest vipers (Atheris) have been poorly studied possibly because they do not represent a major danger to humans. However, initial studies have indicated that they contain some of the “classical” protein toxins of viper venoms and a novel class of peptide, the polyglycine/polyhistidine (pGpH) peptides. These peptides occur in several molecular forms with different numbers of repetitive glycine and histidine repeats. We have cloned the biosynthetic precursor of A. squamigera pGpH peptides from a venom-derived cDNA library and have confirmed that a single copy of CNP is located at the C-terminus and additionally that, like BPPs in other vipers, pGpH peptides are encoded in tandem within this single precursor. Solid phase peptide synthesis of pGpH peptides has proven to be extremely difficult but is progressing and acquisition of synthetic replicates of each peptide is a necessary prerequisite for systematic pharmacological characterisation as establishment of a biological function for these peptides remains elusive. pGpH peptides may prove to play a role as fundamental as that of the BPPs.
Resumo:
Azaspiracids are a class of recently discovered algae-derived shellfish toxins. Their distribution globally is on the increase with mussels being most widely implicated in azaspiracid-related food poisoning events. Evidence that these toxins were bound to proteins in contaminated mussels has been shown recently. In the present study characterization of these proteins in blue mussels, Mytilus edulis, was achieved using a range of advanced proteomics tools. Four proteins present only in the hepatopancreas of toxin-contaminated mussels sharing identity or homology with cathepsin D, superoxide dismutase, glutathione S-transferase Pi, and a bacterial flagellar protein have been characterized. Several of the proteins are known to be involved in self-defense mechanisms against xenobiotics or up-regulated in the presence of carcinogenic agents. These findings would suggest that azaspiracids should now be considered and evaluated as potential tumorigenic compounds. The presence of a bacterial protein only in contaminated mussels was an unexpected finding and requires further investigation. The proteins identified in this study should assist with development of urgently required processes for the rapid depuration of azaspiracid-contaminated shellfish. Moreover they may serve as early warning indicators of shellfish exposed to this family of toxins. Molecular & Cellular Proteomics 8: 1811-1822, 2009.
Resumo:
A rapid surface plasmon resonance (SPR) screening assay has been developed for the combined detection of T-2 and HT-2 toxins in naturally contaminated cereals using a sensor chip coated with an HT-2 toxin derivative and a monoclonal antibody. The antibody raised against HT-2 displayed high cross-reactivity with T-2 toxin while there was no cross-reaction observed with other commonly occurring trichothecenes. A simple extraction procedure using 40% methanol was applied to baby food, breakfast cereal, and wheat samples prior to biosensor analysis. Limits of detection (LOD) for each matrix were determined as 25 mu g kg(-1) for baby food and breakfast cereal and 26 mu g kg(-1) for wheat. Intra-assay precision (n = 6) was calculated for each matrix. The results were expressed as the relative standard deviation and determined as 2.8% (100 mu g kg(-1)) and 1.8% (200 mu g kg(-1)) in breakfast cereal, 4.6% (50 mu g kg(-1)) and 3.6% (100 mu g kg(-1)) in wheat and 0.97% (25 mu g kg(-1)) and 6.3% (50 mu g kg(-1)) in baby food. Between run precision (n = 3) performed at the same levels yielded relative standard deviations of 6.7% and 3.9% for breakfast cereals, 3.3% and 1.6% for wheat and 6.8% and 0.08% for baby food, respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The ability to detect harmful algal bloom (HAB) species and their toxins in real- or near real-time is a critical need for researchers studying HAB/toxin dynamics, as well as for coastal resource managers charged with monitoring bloom populations in order to mitigate their wide ranging impacts. The Environmental Sample Processor (ESP), a robotic electromechanical/fluidic system, was developed for the autonomous, subsurface application of molecular diagnostic tests and has successfully detected several HAB species using DNA probe arrays during field deployments. Since toxin production and thus the potential for public health and ecosystem effects varies considerably in natural phytoplankton populations, the concurrent detection of HAB species and their toxins onboard the ESP is essential. We describe herein the development of methods for extracting the algal toxin domoic acid (DA) from Pseudonitzschia cells (extraction efficiency >90%) and testing of samples using a competitive ELISA onboard the ESP. The assay detection limit is in the low ng/mL range (in extract), which corresponds to low ng/L levels of DA in seawater for a 0.5 L sample volume acquired by the ESP. We also report the first in situ detection of both a HAB organism (i.e., Pseudo-nitzschia) and its toxin, domoic acid, via the sequential (within 2-3 h) conduct of species- and toxin-specific assays during ESP deployments in Monterey Bay, CA, USA. Efforts are now underway to further refine the assay and conduct additional calibration exercises with the aim of obtaining more reliable, accurate estimates of bloom toxicity and thus their potential impacts. Published by Elsevier B.V.
Resumo:
The potential for coupling technologies to deliver new, improved forms of bioanalysis is still in its infancy. We review a number of examples in which coupling has been successful, with special emphasis on combining surface-plasmon-resonance biosensors with mass spectrometry. We give an overview of current progress towards combining biosensor-based bioanalysis with chemical analysis for confirmation of paralytic shellfish poisons that are marine toxins. This comprehensive approach could be an alternative to the official methods currently used (e.g., animal testing and high-performance liquid chromatography with fluorescence detection) and could serve as a model for many more such applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Paralytic shellfish poisoning (PSP) toxin monitoring in shellfish is currently performed using the internationally accredited AOAC mouse bioassay. Due to ethical and performance-related issues associated with this bioassay, the European Commission has recently published directives extending procedures that may be used for official PSP control. The feasibility of using a surface plasmon resonance optical biosensor to detect PSP toxins in shellfish tissue below regulatory levels was examined. Three different PSP toxin protein binders were investigated: a sodium channel receptor (SCR) preparation derived from rat brains, a monoclonal antibody (GT13-A) raised to gonyautoxin 2/3, and a rabbit polyclonal antibody (R895) raised to saxitoxin (STX). Inhibition assay formats were used throughout. Immobilization of STX to the biosensor chip surface was achieved via amino-coupling. Specific binding and inhibition of binding to this surface was achieved using all proteins tested. For STX calibration curves, 0 - 1000 ng/mL, IC50 values for each binder were as follows: SCR 8.11 ng/mL; GT13-A 5.77 ng/mL; and R895 1.56 ng/mL. Each binder demonstrated a different cross-reactivity profile against a range of STX analogues. R895 delivered a profile that was most likely to detect the widest range of PSP toxins at or below the internationally adopted regulatory limits.
Resumo:
The mouse bioassay is the methodology that is most widely used to detect okadaic acid (OA) in shellfish samples. This is one of the best-known toxins, and it belongs to the family of marine biotoxins referred to as the diarrhetic shellfish poisons (DSP). Due to animal welfare concerns, alternative methods of toxin detection are being sought. A rapid and specific biosensor immunoassay method was developed and validated for the detection of OA. An optical sensor instrument based on the surface plasmon resonance (SPR) phenomenon was utilised. A polyclonal antibody to OA was raised against OA-bovine thyroglobulin conjugate and OA-N-hydroxy succinimide ester was immobilised onto an amine sensor chip surface. The assay parameters selected for the analysis of the samples were: antibody dilution, 1/750; ratio of antibody to standard, 1:1; volume of sample injected, 25 mu l min(-1); flow rate, 25 mu l min(-1). An assay action limit of 126 ng g(-1) was established by analysing of 20 shellfish samples spiked with OA at the critical concentration of 160 ng g(-1), which is the action limit established by the European Union (EU). At this concentration of OA, the assay delivered coefficient of variations (CVs) of
Resumo:
There is an increasing demand to develop biosensor monitoring devices capable of biomarker profiling for predicting animal adulteration and detecting multiple chemical contaminants or toxins in food produce. Surface plasmon resonance (SPR) biosensors are label free detection systems that monitor the binding of specific biomolecular recognition elements with binding partners. Essential to this technology are the production of biochips where a selected binding partner, antibody, biomarker protein or low molecular weight contaminant, is immobilised. A micro-fluidic immobilisation device allowing the covalent attachment of up to 16 binding partners in a linear array on a single surface has been developed for compatibility with a prototype multiplex SPR analyser.
The immobilisation unit and multiplex SPR analyser were respectively evaluated in their ability to be fit-for-purpose for binding partner attachment and detection of high and low molecular weight molecules. The multiplexing capability of the dual technology was assessed using phycotoxin concentration analysis as a model system. The parent compounds of four toxin groups were immobilised within a single chip format and calibration curves were achieved. The chip design and SPR technology allowed the compartmentalisation of the binding interactions for each toxin group offering the added benefit of being able to distinguish between toxin families and perform concentration analysis. This model is particularly contemporary with the current drive to replace biological methods for phycotoxin screening.
Resumo:
Biosensors are used for a large number of applications within biotechnology, including the pharmaceutical industry and life sciences. Since the production of Biacore surface-plasmon resonance instruments in the early 1990s, there has been steadily growing use of this technology for the detection of food contaminants (e.g., veterinary drugs, mycotoxins, marine toxins, food dyes and processing contaminants). Other biosensing technologies (e.g., electrochemical and piezoelectric) have also been employed for the analysis of small-molecule contaminants. This review concentrates on recent advances made in detection and quantification of antimicrobial compounds with different types of biosensors and on the emergence of multiplexing, which is highly desirable as it increases sample analysis at lower cost and in less time. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this similar to 130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding do-mains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A 2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms. Molecular & Cellular Proteomics 9:2369-2390, 2010.
Resumo:
Saxitoxin and its analogs, the causative agents of paralytic shellfish poisoning (PSP), are a worldwide threat to seafood safety. Effective monitoring of potentially contaminated fishing areas as well as screening of seafood samples is necessary to adequately protect the public. While many analytical methods exist for detecting paralytic shellfish toxins (PSTs), each technique has challenges associated with routine use. One recently developed method [1] that overcomes ethical or performance-related issues of other techniques is the surface plasmon resonance (SPR) bioassay. Notwithstanding the advantages of this method, much research remains in optimizing the sensor substrate and assay conditions to create a robust technique for rapid and sensitive measurement of PSTs. This manuscript describes a more rigorous and stable SPR inhibition immunoassay through optimization of the surface chemistry as well as determination of optimum mixture ratios and mixing times. The final system provides rapid substrate formation (18 h saxitoxin conjugation with low reagent consumption), contains a reference channel for each assay, and is capable of triplicate measurements in a single run with detection limits well below the regulatory action level. Published by Elsevier B.V.
Resumo:
This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area.
Resumo:
This review considers the ethical and technical problems currently associated with employing mouse bioassays for marine-toxin analysis and the challenges and the difficulties that alternative methods must overcome before being deemed applicable for implementation into a regulatory monitoring regime. We discuss proposed alternative methods, classified as functional, immunological and analytical, for well-established European toxins as well as emerging toxins in European waters, highlighting their advantages and disadvantages. We also consider emerging tools and technologies for future toxin analysis.
Resumo:
We report the results of a synoptic survey at 14 sites across the north of Ireland undertaken to determine the occurrence of cyanobacteria and their constituent microcystin cyanotoxins. Seven microcystin toxins were tested for, and five of which were found, with MC-LR, MC-RR, and MC-YR being the most prevalent. Gomphosphaeria spp and Microcystis aeruginosa were the most dominant cyanobacterial species encountered. Together with Aphanizomenon flos-aquae, these were the cyanobacteria associated with the highest microcystin concentrations. The occurrence of several microcystin toxins indicates that there may potentially be more than one cyanobacteria species producing microcystins at many sites. Total microcystin concentrations varied over three orders of magnitude dividing the sites into two groups of high (>1000 ngMC/μgChla, six sites) or low toxicity (<200 ngMC/μgChla, eight sites). © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2010.