63 resultados para Topical Solute
Resumo:
There is an urgent global need for preventative strategies against HIV-1 infections. Llama heavy-chain antibody fragments (VHH) are a class of molecules recently described as potent cross-clade HIV-1 entry inhibitors. We studied the potential of a VHH-based microbicide in an application-oriented fashion. We show that VHH can be inexpensively produced in high amounts in the GRAS organism S. cerevisiae, resulting in very pure, and endotoxin free product. VHH are very stable under conditions they might encounter during transport, storage or use by women. We developed active formulations of VHH in aqueous gel and compressed and lyophilized tablets for controlled release from an intra vaginal device. The release profile of the VHH from e.g. a vaginal ring suggests sufficient bioavailability and protective concentration of the molecule at the mucosal site at the moment of the infection. The ex vivo penetration kinetics through human tissues show that the VHH diffuse into the mucosal layer and open the possibility to create a second defense layer either by blocking the HIV receptor binding sites or by blocking the receptors of immune cells in the mucosa. In conclusion, our data show that VHH have
Resumo:
Purpose. This study examined the viscoelastic properties of bioadhesive, chlorhexidine-containing semi-solid formulations, designed for topical application to the oropharynx.
Resumo:
Approach:
In-situ passive gradient comparative artificial tracer testing, undertaken using solutes (Uranine and Iodide), Bacteria (E.coli and P.putida) and bacteriophage (H40/1), permitted comparison of the mobility of different sized microorganisms relative to solutes in the sand and gravel aquifer underlying Dornach, Germany.
Tracer breakthrough curves reveal that even though uranine initially arrived at observation wells at the same time as microbiological tracers, maximum relative concentrations were sometimes less than those of microbiological tracers, while solute breakthrough curves proved more disperse.
Monitoring uranine breakthrough with depth suggested tracers arrived in observation wells in discrete 0.5m-1m thick intervals, over the aquifer’s 12m saturated thickness. Nearby exposures of aquifer material suggested that the aquifer consisted of sandy gravels enveloping sequences of open framework (OW) gravel up to 1m thick. Detailed examination of OW units revealed that they contained lenses of silty sand up to 1m long x 30cm thick., while granulometric data suggested that the gravel was two to three orders of magnitude more permeable than the enveloping sandy gravel.
Solute and microorganism tracer responses could not be simulated using conventional advective-dispersive equation solutions employing the same velocity and dispersion terms. By contrast solute tracer responses, modelled using a dual porosity approach for fractured media (DP-1D) corresponded well to observed field data. Simulating microorganism responses using the same transport terms, but no dual porosity term, generated good model fits and explained the higher relative concentration of the bacteria, compared to the non-reactive solute, even with first order removal to account for lower RR. Geologically, model results indicate that the silty units within open framework gravels are accessible to solute tracers, but not to microorganisms.
Importance:
Results highlight the benefits of geological observations developing appropriate conceptual models of solute and micro organism transport and in developing suitable numerical approaches to quantifying microorganism mobility at scales appropriate for the development of groundwater supply (wellhead) protection zones.
Resumo:
Groundwater drawn from fluvioglacial sand and gravel aquifers form the principal source of drinking water in many part of central Western Europe. High population densities and widespread organic agriculture in these same areas constitute hazards that may impact the microbiological quality of many potable supplies. Tracer testing comparing two similarly sized bacteria (E.coli and P. putida) and the smaller bacteriophage (H40/1) with the response of non-reactive solute tracer (uranine) at the decametre scale revealed that all tracers broke through up to 100 times more quickly than anticipated using conventional rules of thumb. All microbiological tracer responses were less disperse than the solute, although bacterial peak relative concentrations consistently exceeded those of the solute tracer at one sampling location reflecting exclusion processes influencing micro biological tracer migration. Relative recoveries of H40/1 and E.coli proved consistent at both monitoring wells, while responses of H40/1 and P.putida differed. Examination of exposures of the upper reaches of the aquifer in nearby sand and gravel quarries revealed the aquifer to consist of laterally extensive layers of open framework (OW) gravel enveloped in finer grained gravelly sand. Granulometric analysis of these deposits suggested that the OW gravel was up to two orders of magnitude more permeable than the surrounding deposits giving rise to the preferential flow paths. By contrast fine grained lenses of silty sand within the OW gravels are suspected to play an important role in the exclusion processes that permit solutes to access them but exclude larger micro organisms.