59 resultados para Titanium dioxide -- Synthesis
Resumo:
An overview of the use of semiconductor photocatalysis for water purification is given. The basic principles of semiconductor photocatalysis are described along with the current understanding of the underlying reaction mechanism(s) and how it fits in with the major features of the observed Langmuir-Hinshelwood-type kinetics of pollutant destruction. These features are illustrated based on literature on the destruction of aqueous solutions of 4-chlorophenol as a pollutant, using titanium dioxide as the photocatalyst. The range of organic and inorganic pollutants that can be destroyed by semiconductor photocatalysis are reported and discussed. The basic considerations that need to be made when designing a reactor for semiconductor photocatalysis are considered. These include: the nature of the reactor glass, the type of illumination source, and the nature and type of semiconductor photocatalyst. The key basic photoreactor designs are reported and discussed, including external illumination, annular, and circular photoreactors. Actual designs that have been used for fixed and thin falling film semiconductor photocatalyst reactors are illustrated and their different features discussed. Basic non-concentrating and concentrating solar photoreactors for semiconductor photocatalysis are also reported. The design features of the major commercial photocatalytic reactor systems for water purification are reported and illustrated. Several case studies involving commercial photocatalytic reactors for water purification are reported. An attempt is made briefly to compare the efficacy of semiconductor photocatalysis for water purification with that of other, more popular and prevalent water purification processes. The future of semiconductor photocatalysis as a method of purifying water is considered.
Resumo:
The semiconductor photocatalyst, platinised titanium dioxide, Pt/TiO2, is used to promote the destruction of bromate ions to bromide and oxygen by 254 nm ultraviolet light. The kinetics of bromate removal are first order with respect to [BrO3-] and are inhibited, although not completely, by competitive adsorption by other anions, including bromide and sulfate ions. The Pt/TiO2 can be used not only as a powder dispersion, but also as a thin film in a flow reactor for the destruction of bromate ions. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
The yield of substituted benzaldehydes and benzoic acids formed by the aerial oxidation of a range of substituted toluenes photocatalysed by titanium dioxide in acetonitrile is dramatically improved by the addition of small amounts of sulfuric acid.
Resumo:
The kinetics of the photomineralization of salicylic acid (SA) sensitized by Degussa P25 titanium dioxide (TiO2) dispersions in oxygenated aqueous solution are reported as a function of the following experimental parameters: [TiO2], percentage of O-2, [SA], temperature (T) and light intensity (I). The kinetics of SA photomineralization conform to a Langmuir-Hinshelwood kinetic scheme with SA and O-2 adsorbed at different sites with apparent Langmuir adsorption coefficients of (6.1 +/- 1.2) x 10(4) mol(-1) dm(3) and 0.061 +/- 0.007 kPa(-1) respectively. The overall activation energy for the system was determined as 4.6 +/- 0.2 kJ mol(-1). Two major stable reaction intermediates are identified (dihydroxybenzoic acids (DHBA) and catechol (C)) and the existence of a further pathway involving one or more very unstable and, as yet, unidentified reaction intermediates is proposed. A kinetic model is presented which describes the temporal behaviour of the concentrations of SA, CO2 and the major photogenerated intermediates (DHBA and C). This model is used to predict successfully the temporal behaviour of the major intermediates in the photomineralization of SA under non-standard conditions.
Resumo:
We demonstrate a model for stoichiometric and reduced titanium dioxide intended for use in molecular dynamics and other atomistic simulations and based in the polarizable ion tight binding theory. This extends the model introduced in two previous papers from molecular and liquid applications into the solid state, thus completing the task of providing a comprehensive and unified scheme for studying chemical reactions, particularly aimed at problems in catalysis and electrochemistry. As before, experimental results are given priority over theoretical ones in selecting targets for model fitting, for which we used crystal parameters and band gaps of titania bulk polymorphs, rutile and anatase. The model is applied to six low index titania surfaces, with and without oxygen vacancies and adsorbed water molecules, both in dissociated and non-dissociated states. Finally, we present the results of molecular dynamics simulation of an anatase cluster with a number of adsorbed water molecules and discuss the role of edge and corner atoms of the cluster. (C) 2014 AIP Publishing LLC.
Resumo:
This paper describes a novel doped titania immobilised thin film multi tubular photoreactor which has been developed for use with liquid, vapour or gas phase media. In designing photocatalytic reactors measuring active surface area of photocatalyst within the unit is one of the critical design parameters. This dictate greatly limits the applicability of any semi-conductor photocatalyst in industrial applications, as a large surface area equates to a powder catalyst. This demonstration of a thin film coating, doped with a rare earth element, novel photoreactor design produces a photocatalytic degradation of a model pollutant (methyl orange) which displayed a comparable degradation achieved with P25 TiO2. The use of lanthanide doping is reported here in the titania sol gel as it is thought to increase the electron hole separation therefore widening the potential useful wavelengths within the electromagnetic spectrum. Increasing doping from 0.5% to 1.0% increased photocatalytic degradation by ∼17% under visible irradiation. A linear relationship has been seen between increasing reactor volume and degradation which would not normally be observed in a typical suspended reactor system. © 2012 Elsevier B.V.
Resumo:
This article reports the development of a novel drum photocatalytic reactor for treating dye effluent streams. The parameters for operation including drum rotation speed, light source distance, catalyst loading and H2O2 doping have been investigated using methylene blue as a model pollutant. Effluent can be generated by a number of domestic and industrial sources, including pharmaceutical, oil and gas, agricultural, food and chemical sectors. The work reported here proposes the application of semiconductor photocatalysis as a final polishing step for the removal of hydrocarbons from effluents sources, initial studies have proved effective in removing residual hydrocarbons from the effluent.
Resumo:
The use of controlled periodic illumination with UV LEDs for enhancing photonic efficiency of photocatalytic decomposition processes in water has been investigated using methyl orange as a model compound. The impact of the length of light and dark time periods (T ON/T OFF times) on photodegradation and photonic efficiency using a UV LED-illuminated photoreactor has been studied. The results have shown an inverse dependency of the photonic efficiency on duty cycle and a very little effect on T ON or T OFF time periods, indicating no effect of rate-limiting steps through mass diffusion or adsorption/desorption in the reaction. For this reactor, the photonic efficiency under controlled periodic illumination (CPI) matches to that of continuous illumination, for the same average UV light intensities. Furthermore, under CPI conditions, the photonic efficiency is inversely related to the average UV light intensity in the reactor, in the millisecond time regime. This is the first study that has investigated the effect of controlled periodic illumination using ultra band gap UV LED light sources in the photocatalytic destruction of dye compounds using titanium dioxide. The results not only enhance the understanding of the effect of periodic illumination on photocatalytic processes but also provide a greater insight to the potential of these light sources in photocatalytic reactions.
Resumo:
The water treatment capability of a novel photocatalytic slurry reactor was investigated using methylene blue (MB) as a model pollutant in an aqueous suspension. A pellet TiO 2 catalyst was employed and this freed the system from the need of filtration of catalyst following photocatalysis. This configuration combines the high surface area contact of catalyst with pollutant of the slurry reactor and also offers a high illumination of catalyst by its unique array of weir-like baffles. In this work, the batch adsorption of MB from aqueous solution (10μM) onto the TiO 2 catalyst was studied, adsorption isotherms and kinetics were determined from the experimental data. Complete degradation of MB was achieved within 60 min illumination with various loadings of catalyst (30-200 g L -1). A modest catalyst loading (30 g L -1) achieved 98% degradation within 60 min of irradiation. Experimental results indicate that this novel reactor configuration has a high effective mass transfer rate and UV light penetration characteristics.
Resumo:
Microcystins are one of the primary hepatotoxic cyanotoxins released from cyanobacteria. The presence of these compounds in water has resulted in the death of both humans and domestic and wild animals. Although microcystins are chemically stable titanium dioxide photocatalysis has proven to be an effective process for the removal of these compounds in water. One problem with this process is that it requires UV light and therefore in order to develop effective commercial reactor units that could be powered by solar light it is necessary to utilize a photocatalyst that is active with visible light. In this paper we report on the application of four visible light absorbing photocatalysts for the destruction of microcystin-LR in water. The rhodium doped material proved to be the most effective material followed by a carbon-modified titania. The commercially available materials were both relatively poor photocatalysts under visible radiation while the platinum doped catalyst also displayed a limited activity for toxin destruction. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
The current study sought to assess the importance of three common variables on the outcome of TiO2 photocatalysis experiments with bacteria. Factors considered were (a) ability of test species to withstand osmotic pressure, (b) incubation period of agar plates used for colony counts following photocatalysis and (c) chemical nature of suspension medium used for bacteria and TiO2. Staphylococcus aureus, Escherichia coli, Salmonella ser. Typhimurium and Pseudomonas aeruginosa were found to vary greatly in their ability to withstand osmotic pressure, raising the possibility that osmotic lysis may be contributing to loss of viability in some photocatalytic disinfection studies. Agar plate incubation time was also found to influence results, as bacteria treated with UV light only grew more slowly than those treated with a combination of UV and TiO2. The chemical nature of the suspension medium used was found to have a particularly pronounced effect upon results. Greatest antibacterial activity was detected when aqueous sodium chloride solution was utilised, with ∼1 × 106 CFU mL-1 S. aureus being completely killed after 60 min. Moderate activity was observed when distilled water was employed with bacteria being killed after 2 h and 30 min, and no antibacterial activity at all was detected when aqueous tryptone solution was used. Interestingly, the antibacterial activity of UV light on its own appeared to be very much reduced in experiments where aqueous sodium chloride was employed instead of distilled water.
Resumo:
Titanium dioxide (TiO2) photocatalysis has been used to initiate the destruction of nodularin, a natural hepatotoxin produced by cyanobacteria. The destruction process was monitored using liquid chromatography-mass spectrometry analysis which has also enabled the identification of a number of the photocatalytic decomposition products. The reduction in toxicity following photocatalytic treatment was evaluated using protein phosphatase inhibition assay, which demonstrated that the destruction of nodularin was paralleled by an elimination of toxicity.
Resumo:
The rapid destruction of microcystin, a cyanobacterial toxin, using a titanium dioxide photocatalyst is observed; the process is extremely efficient with high concentrations of toxin completely undetectable within 10-40 min, depending on the initial concentration.
Resumo:
Quantum yields of the photocatalytic degradation of methyl orange under controlled periodic illumination (CPI) have been modelled using existing models. A modified Langmuir-Hinshelwood (L-H) rate equation was used to predict the degradation reaction rates of methyl orange at various duty cycles and a simple photocatalytic model was applied in modelling quantum yield enhancement of the photocatalytic process due to the CPI effect. A good agreement between the modelled and experimental data was observed for quantum yield modelling. The modified L-H model, however, did not accurately predict the photocatalytic decomposition of the dye under periodic illumination.
Resumo:
In this work, density functional theory calculations have been performed to study the geometric, electronic, and energetic properties of two-phase TiO2 composites built by joining two single-phase TiO2 slabs, aiming at verifying possible improvement of the photo-activities of the composites through phase separation of excitons. We find that such desired electronic properties can be determined by several factors. When both the HOMO and LUMO levels of one of the two single-phase TiO2 slabs are higher than the corresponding ones of the other, the composite may have native electronic structures with phase-separated HOMO-LUMO states, especially when the two slabs exhibit highly matched surface lattices. For those pairs of TiO2 slabs with the HOMO and LUMO levels of one phase being within the range of those of the other, though the energetically favored composite give HOMO-LUMO states within one phase, one may still be able to separate them and move the HOMO state to the interface region by destabilizing the interactions between the two slabs.