75 resultados para Three-dimensional studies
Resumo:
Patterns forming spontaneously in extended, three-dimensional, dissipative systems are likely to excite several homogeneous soft modes (approximate to hydrodynamic modes) of the underlying physical system, much more than quasi-one- (1D) and two-dimensional (2D) patterns are. The reason is the lack of damping boundaries. This paper compares two analytic techniques to derive the pattern dynamics from hydrodynamics, which are usually equivalent but lead to different results when applied to multiple homogeneous soft modes. Dielectric electroconvection in nematic liquid crystals is introduced as a model for 3D pattern formation. The 3D pattern dynamics including soft modes are derived. For slabs of large but finite thickness the description is reduced further to a 2D one. It is argued that the range of validity of 2D descriptions is limited to a very small region above threshold. The transition from 2D to 3D pattern dynamics is discussed. Experimentally testable predictions for the stable range of ideal patterns and the electric Nusselt numbers are made. For most results analytic approximations in terms of material parameters are given. [S1063-651X(00)09512-X].
Resumo:
A mechanism or the localization of spatially periodic,self-oganized patterns in anisotropic media which requires systems extended in all three spatial dimensions is presented: When the anisotropy axis is twisted, the pattern becomes localized in planes parallel to the anisotropy axis. An analytical description of the effect is developed, and used to interpret recent experiments in the high-frequency regime of electroconvection by Bohatsch and Stannarius [Phys. Rev. E 60, 5591 (1999)]. The localization width is found to be of the order of magnitude of the geometrical average of the pattern wavelength and the inverse twist.
Resumo:
Near-infrared diffuse tomography was used in order to observe dynamic behaviour of flowing gases by measuring the 3D distributions of composition and temperature in a weakly scattering packed bed reactor, subject to wall effects and non-isothermal conditions. The technique was applied to the vapour phase hydrogen isotopic exchange reaction in a hydrophobic packing of low aspect ratio made of platinum on styrene divinyl benzene sulphonate copolymer resin. The results of tomography revealed uneven temperature and composition maps of water and deuterated water vapours in the core-packed bed and in the vicinity of the wall owing to flow maldistribution. The dynamic lag between the near-wall water vapour and deuterated water vapour compositions were observed suggesting that the convective transfer which was significant near the wall at the start, owing to high porosity, was also effective at large conversions.
Resumo:
Background: Laparoscopic surgery requires surgeons to infer the shape of 3-D structures, such as the internal organs of patients, from 2-D displays on a video monitor. Recent evidence indicates that the issue is not resolved by the use of contemporary 3-D camera systems. It is therefore crucial to find ways of measuring differences in aptitude for recovering 3-D structure from 2-D images, and assessing its impact on performance. Our aim was to test empirically for a relationship between laparoscopic ability and the perceptual skill of recovering information about 3-D structures from 2-D monitor displays.
Resumo:
Interferometry has been used to investigate the spatio-temporal evolution of the electron number density in the initial stages of expansion following 248 nm ablation of a titanium target. Three-dimensional electron number densities are obtained from an interferogram of the plasma plume using the Abel inversion technique.