56 resultados para Thermodynamic consistency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous drug-polymer solid dispersions have the potential to enhance the dissolution performance and thus bioavailability of BCS class II drug compounds. The principle drawback of this approach is the limited physical stability of amorphous drug within the dispersion. Accurate determination of the solubility and miscibility of drug in the polymer matrix is the key to the successful design and development of such systems. In this paper, we propose a novel method, based on Flory-Huggins theory, to predict and compare the solubility and miscibility of drug in polymeric systems. The systems chosen for this study are (1) hydroxypropyl methylcellulose acetate succinate HF grade (HPMCAS-HF)-felodipine (FD) and (2) Soluplus (a graft copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol)-FD. Samples containing different drug compositions were mixed, ball milled, and then analyzed by differential scanning calorimetry (DSC). The value of the drug-polymer interaction parameter ? was calculated from the crystalline drug melting depression data and extrapolated to lower temperatures. The interaction parameter ? was also calculated at 25 °C for both systems using the van Krevelen solubility parameter method. The rank order of interaction parameters of the two systems obtained at this temperature was comparable. Diagrams of drug-polymer temperature-composition and free energy of mixing (?G mix) were constructed for both systems. The maximum crystalline drug solubility and amorphous drug miscibility may be predicted based on the phase diagrams. Hyper-DSC was used to assess the validity of constructed phase diagrams by annealing solid dispersions at specific drug loadings. Three different samples for each polymer were selected to represent different regions within the phase diagram

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the computational complexity of testing dominance and consistency in CP-nets. Previously, the complexity of dominance has been determined for restricted classes in which the dependency graph of the CP-net is acyclic. However, there are preferences of interest that define cyclic dependency graphs; these are modeled with general CP-nets. In our main results, we show here that both dominance and consistency for general CP-nets are PSPACE-complete. We then consider the concept of strong dominance, dominance equivalence and dominance incomparability, and several notions of optimality, and identify the complexity of the corresponding decision problems. The reductions used in the proofs are from STRIPS planning, and thus reinforce the earlier established connections between both areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. The pH-dependent physicochemical properties of the antimicrobial quinolone, nalidixic acid, were exploited to achieve ‘intelligent’ drug release from a potential urinary catheter coating, poly(2-hydroxyethylmethacrylate) (p(HEMA)), in direct response to the elevated pH which occurs at the onset of catheter infection.
Methods. p(HEMA) hydrogels, and reduced-hydrophilicity copolymers incorporating methyl methacrylate, were loaded with nalidixic acid by a novel, surface particulate localization method, and characterized in terms of pH-dependent drug release and microbiological activity against the common urease-producing urinary pathogen Proteus mirabilis.
Results. The pH-dependent release kinetics of surface-localized nalidixic acid were 50- and 10-fold faster at pH 9, representing the alkaline conditions induced by urease-producing urinary pathogens, compared to release at pH 5 and pH 7 respectively. Furthermore, microbiological activity against P. mirabilis was significantly enhanced after loading surface particulate nalidixic acid in comparison to p(HEMA) hydrogels conventionally loaded with dispersed drug. The more hydrophobic methyl methacrylate-containing copolymers also demonstrated this pH responsive behavior, but additionally exhibited a sustained period of zero-order release.
Conclusions. The paradigm presented here provides a system with latent, immediate infection-responsive drug release followed by prolonged zero-order antimicrobial delivery, and represents an ‘intelligent’, infection-responsive, self-sterilizing biomaterial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the long-term consistency of individual differences in dairy cattles’ responses in tests of behavioural and hypothalamo–pituitary–adrenocortical (HPA) axis reactivity, as well as the relationship between responsiveness in behavioural tests and the reaction to first milking. Two cohorts of heifer calves, Cohorts 1 (N = 25) and 2 (N = 16), respectively, were examined longitudinally from the rearing period until adulthood. Cohort 1 heifers were subjected to open field (OF), novel object (NO), restraint, and response to a human tests at 7 months of age, and were again observed in an OF test during first pregnancy between 22 and 24 months of age. Subsequently, inhibition of milk ejection and stepping and kicking behaviours were recorded in Cohort 1 heifers during their first machine milking. Cohort 2 heifers were individually subjected to OF and NO tests as well as two HPA axis reactivity tests (determining ACTH and/or cortisol response profiles after administration of exogenous CRH and ACTH, respectively) at 6 months of age and during first lactation at approximately 29 months of age. Principal component analysis (PCA) was used to condense correlated response measures (to behavioural tests and to milking) within ages into independent dimensions underlying heifers’ reactivity. Heifers demonstrated consistent individual differences in locomotion and vocalisation during an OF test from rearing to first pregnancy (Cohort 1) or first lactation (Cohort 2). Individual differences in struggling in a restraint test at 7 months of age reliably predicted those in OF locomotion during first pregnancy in Cohort 1 heifers. Cohort 2 animals with high cortisol responses to OF and NO tests and high avoidance of the novel object at 6 months of age also exhibited enhanced cortisol responses to OF and NO tests at 29 months of age. Measures of HPA axis reactivity, locomotion, vocalisation and adrenocortical and behavioural responses to novelty were largely uncorrelated, supporting the idea that stress responsiveness in dairy cows is mediated by multiple independent underlying traits. Inhibition of milk ejection and stepping and kicking behaviours during first machine milking were not related to earlier struggling during restraint, locomotor responses to OF and NO tests, or the behavioural interaction with a novel object. Heifers with high rates of OF and NO vocalisation and short latencies to first contact with the human at 7 months of age exhibited better milk ejection during first machine milking. This suggests that low underlying sociality might be implicated in the inhibition of milk ejection at the beginning of lactation in heifers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knowledge of the chemical stability as a function of the temperature of ionic liquids (ILs) in the presence of other molecules such as water is crucial prior to developing any no GO industrial application and process involving these novel materials. Fluid phase equilibria and density over a large range of temperature and composition can give basic information on IL purity and chemical stability. The IL scientific community requires accurate measurements accessed from reference data. In this work, the stability of different alkyl sulfate-based ILs in the presence of water and various alcohols (methanol, ethanol, 1-butanol, and 1-octanol) was investigated to understand their stability as a function of temperature up to 423.15 K over the hydrolysis and transesterification reactions, respectively. From this investigation, it was clear that methyl sulfate- and ethyl sulfate-based ILs are not stable in the presence of water, since hydrolysis of the methyl sulfate or ethyl sulfate anions to methanol or ethanol and hydrogenate anion is undoubtedly observed. Such observations could help to explain the differences observed for the physical properties published in the literature by various groups. Furthermore, it appears that a thermodynamic equilibrium process drives these hydrolysis reactions. In other words, these hydrolysis reactions are in fact reversible, providing the possibility to re-form the desired alkyl sulfate anions by a simple transesterification reaction between hydrogen sulfate-based ILs and the corresponding alcohol (methanol or ethanol). Additionally, butyl sulfate- and octyl sulfate-based ILs appear to follow this pattern but under more drastic conditions. In these systems, hydrolysis is observed in both cases after several months for temperatures up to 423 K in the presence of water. Therein, the partial miscibility of hydrogen sulfate-based ILs with long chain alcohols (1-butanol and 1-octanol) can help to explain the enhanced hydrolytic stability of the butyl sulfate- and octyl sulfate-based ILs compared with the methyl or ethyl sulfate systems. Additionally, rapid transesterification reactions are observed during liquid-liquid equilibrium studies as a function of temperature for binary systems of (hydrogen sulfate-based ionic liquids + 1-butanol) and of (hydrogen sulfate-based ionic liquids + 1-octanol). Finally, this atom-efficient catalyst-free transesterification reaction between hydrogen sulfate-based ILs and alcohol was then tested to provide a novel way to synthesize new ILs with various anion structures containing the alkyl sulfate group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present research investigates the uptake of phosphate ions from aqueous solutions using acidified laterite (ALS), a by-product from the production of ferric aluminium sulfate using laterite. Phosphate adsorption experiments were performed in batch systems to determine the amount of phosphate adsorbed as a function of solution pH, adsorbent dosage and thermodynamic parameters per fixed P concentration. Kinetic studies were also carried out to study the effect of adsorbent particle sizes. The maximum removal capacity of ALS observed at pH 5 was 3.68 mg P g-1. It was found that as the adsorbent dosage increases, the equilibrium pH decreases, so an adsorbent dosage of 1.0 g L-1 of ALS was selected. Adsorption capacity (qm) calculated from the Langmuir isotherm was found to be 2.73 mg g-1. Kinetic experimental data were mathematically well described using the pseudo first-order model over the full range of the adsorbent particle size. The adsorption reactions were endothermic, and the process of adsorption was favoured at high temperature; the ΔG and ΔH values implied that the main adsorption mechanism of P onto ALS is physisorption. The desorption studies indicated the need to consider a NaOH 0.1M solution as an optimal solution for practical regeneration applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conversion of biomass for production of liquid fuels can help in reducing the greenhouse gas (GHG) emissions which are predominantly generated by combustion of fossil fuels. Adding oxymethylene ethers (OMEs) in conventional diesel fuel has the potential to reduce soot formation during the combustion in a diesel engine. OMEs are downstream products of syngas, which can be generated by the gasification of biomass. In this research, a thermodynamic analysis has been conducted through development of data intensive process models of all the unit operations involved in production of OMEs from biomass. Based on the developed model, the key process parameters affecting the OMEs production including equivalence ratio, H2/CO ratio, and extra water flow rate were identified. This was followed by development of an optimal process design for high OMEs production. It was found that for a fluidized bed gasifier with heat capacity of 28 MW, the conditions for highest OMEs production are at an air amount of 317 tonne/day, at H2/CO ratio of 2.1, and without extra water injection. At this level, the total OMEs production is 55 tonne/day (13 tonne/day OME3 and 9 tonne/day OME4). This model would further be used in a techno-economic assessment study of the whole biomass conversion chain to determine the most attractive pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Tobacco smoke is a major risk to the health of its users and arsenic is among the components of smoke present at concentrations of toxicological concern. There are significant variations in human toxicity between inorganic and organic arsenic species and the aim of this study was to determine whether there are predictable relationships among major arsenic species in tobacco that could be useful for risk assessment.

Methods: 14 samples of tobacco were studied spanning a wide range of concentrations in samples from different geographical regions, including certified reference materials and cigarette products. Inorganic and major organic arsenic species were extracted from powdered tobacco samples by nitric acid using microwave digestion. Concentrations of arsenic species in these extracts were determined using HPLC-ICPMS.

Results: The concentrations of total inorganic arsenic species range from 144 to 3914 mu g kg(-1), while organic species dimethylarsinic acid (DMA) ranges from 21 to 176 mu g As kg(-1), and monomethylarsonic acid (MA) ranges from 30 to 116 mu g kg(-1). The percentage of species eluted compared to the total arsenic extracted ranges from 11.1 to 36.8% suggesting that some As species (possibly macro-molecules, strongly complexed or in organic forms) do not elute from the column. This low percentage of column-speciated arsenic is indicative that more complex forms of arsenic exist in the tobacco. All the analysed species correlate positively with total arsenic concentration over the whole compositional range and regression analysis indicates a consistent ratio of about 4:1 in favour of inorganic arsenic compared with MA + DMA.

Conclusions: The dominance of inorganic arsenic species among those components analysed is a marked feature of the diverse range of tobaccos selected for study. Such consistency is important in the context of a WHO expert panel recommendation to regulate tobacco crops and products using total arsenic concentration. If implemented more research would be required to develop models that accurately predict the smoker's exposure to reduced inorganic arsenic species on the basis of leaf or product concentration and product design features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element (FE) simulations provides an inexpensive alternative for material testingof new metal alloys. Carrying out experimental testing is expensive. Nanoindentation is particularly costly due to the equipment needed to work on such a scale. FE simulations provide an inexpensive means of material testing if accurately carried out. This paper will demonstrate the applicability and accuracy of using FE modelling for basic material tests and will propose that the viscoplastic model may be used for nanoindentation testing. The simulations will test the Young’s modulus of materials during analysis when an Abaqus VUMAT is used. The viscoplastic model is incorporated into a subroutine and is tested at the macroscopic scale against previous published results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The speeds of sound in dibromomethane, bromochloromethane, and dichloromethane have been measured in the temperature range from 293.15 to 313.15 K and at pressures up to 100 MPa. Densities and isobaric heat capacities at atmospheric pressure have been also determined. Experimental results were used to calculate the densities and isobaric heat capacities as the function of temperature and pressure by means of a numerical integration technique. Moreover, experimental data at atmospheric pressure were then used to determine the SAFT-VR Mie molecular parameters for these liquids. The accuracy of the model has been then evaluated using a comparison of derived experimental high-pressure data with those predicted using SAFT. It was found that the model provide the possibility to predict also the isobaric heat capacity of all selected haloalkanes within an error up to 6%.