89 resultados para Therapeutics, Physiological.
Resumo:
Connectivity mapping is a recently developed technique for discovering the underlying connections between different biological states based on gene-expression similarities. The sscMap method has been shown to provide enhanced sensitivity in mapping meaningful connections leading to testable biological hypotheses and in identifying drug candidates with particular pharmacological and/or toxicological properties. Challenges remain, however, as to how to prioritise the large number of discovered connections in an unbiased manner such that the success rate of any following-up investigation can be maximised. We introduce a new concept, gene-signature perturbation, which aims to test whether an identified connection is stable enough against systematic minor changes (perturbation) to the gene-signature. We applied the perturbation method to three independent datasets obtained from the GEO database: acute myeloid leukemia (AML), cervical cancer, and breast cancer treated with letrozole. We demonstrate that the perturbation approach helps to identify meaningful biological connections which suggest the most relevant candidate drugs. In the case of AML, we found that the prevalent compounds were retinoic acids and PPAR activators. For cervical cancer, our results suggested that potential drugs are likely to involve the EGFR pathway; and with the breast cancer dataset, we identified candidates that are involved in prostaglandin inhibition. Thus the gene-signature perturbation approach added real values to the whole connectivity mapping process, allowing for increased specificity in the identification of possible therapeutic candidates.
Resumo:
This study aimed to test these hypotheses: cystathionine gamma-lyase (CSE) is expressed in a human artery, it generates hydrogen sulfide (H2S), and H2S relaxes a human artery. H2S is produced endogenously in rat arteries from cysteine by CSE. Endogenously produced H2S dilates rat resistance arteries. Although CSE is expressed in rat arteries, its presence in human blood vessels has not been described. In this study, we showed that both CSE mRNA, determined by reverse transcription-polymerase chain reaction, and CSE protein, determined by Western blotting, apparently occur in the human internal mammary artery (internal thoracic artery). Artery homogenates converted cysteine to H2S, and the H2S production was inhibited by DL-propargylglycine, an inhibitor of CSE. We also showed that H2S relaxes phenylephrine-precontracted human internal mammary artery at higher concentrations but produces contraction at low concentrations. The latter contractions are stronger in acetylcholine-prerelaxed arteries, suggesting inhibition of nitric oxide action. The relaxation is partially blocked by glibenclamide, an inhibitor of K-ATP channels. The present results indicate that CSE protein is expressed in human arteries, that human arteries synthesize H2S, and that higher concentrations of H2S relax human arteries, in part by opening K-ATP channels. Low concentrations of H2S contract the human internal mammary artery, possibly by reacting with nitric oxide to form an inactive nitrosothiol. The possibility that CSE, and the H2S it generates, together play a physiological role in regulating the diameter of arteries in humans, as has been demonstrated in rats, should be considered.
Resumo:
Understanding the molecular etiology and heterogeneity of disease has a direct effect on cancer therapeutics. To identify novel molecular changes associated with breast cancer progression, we conducted phosphoproteomics of the MCF10AT model comprising isogenic, ErbB2- and ErbB3-positive, xenograft-derived cell lines that mimic different stages of breast cancer. Using in vitro animal model and clinical breast samples, our study revealed a marked reduction of epidermal growth factor receptor (EGFR) expression with breast cancer progression. Such diminution of EGFR expression was associated with increased resistance to Gefitinib/Iressa in vitro. Fluorescence in situ hybridization showed that loss of EGFR gene copy number was one of the key mechanisms behind the low/null expression of EGFR in clinical breast tumors. Statistical analysis on the immunohistochemistry data of EGFR expression from 93 matched normal and breast tumor samples showed that (a) diminished EGFR expression could. be detected as early as in the preneoplastic lesion (ductal carcinoma in situ) and this culminated in invasive carcinomas; (b) EGFR expression levels could distinguish between normal tissue versus carcinoma in situ and invasive carcinoma with high statistical significance (P
Resumo:
Immersed shannies (Blennius pholis) showed peak locomotory activity coincident with daylight high tides. Emersion caused cessation of breathing and bradycardia though Q02 was little affected. Q02 fell, however, when the abdomen was enclosed in an impermeable sheath to block cutaneous respiration. Gulping of air into the extensively vascular oesophagus probably also acts as a means of aerial respiration. Reimmersion of fish caused a transient bradycardia followed by a tachycardia and a fall in Q02 followed subsequently by a rise. The results are discussed in relation to the behavioural, circulatory, respiratory and morphological adaptations of the shanny to the intertidal habitat.
Resumo:
Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca(2+) rise in response to stimulation of mouse TRPC4ß by µ-opioid receptors. ML204 inhibited TRPC4ß-mediated intracellular Ca(2+) rise with an IC(50) value of 0.96 µm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4ß currents activated through either µ-opioid receptor stimulation or intracellular dialysis of guanosine 5'-3-O-(thio)triphosphate (GTP?S), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10-20 µm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTP?S, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.
Resumo:
Physiological secretion of bile acids has previously been linked to the regulation of blood glucose. GLP-1 is an intestinal peptide hormone with important glucose-lowering actions, such as stimulation of insulin secretion and inhibition of glucagon secretion. In this investigation, we assessed the ability of several bile acid compounds to secrete GLP-1 in vitro in STC-1 cells. Bile acids stimulated GLP-1 secretion from 3.3- to 6.2-fold but some were associated with cytolytic effects. Glycocholic and taurocholic acids were selected for in vivo studies in normal and GLP-1R(-/-) mice. Oral glucose tolerance tests revealed that glycocholic acid did not affect glucose excursions. However, taurocholic acid reduced glucose excursions by 40% in normal mice and by 27% in GLP-1R(-/-) mice, and plasma GLP-1 concentrations were significantly elevated 30 min post-gavage. Additional studies used incretin receptor antagonists to probe involvement of GLP-1 and GIP in taurocholic acid-induced glucose lowering. The findings suggest that bile acids partially aid glucose regulation by physiologically enhancing nutrient-induced GLP-1 secretion. However, GLP-1 secretion appears to be only part of the glucose-lowering mechanism and our studies indicate that the other major incretin GIP is not involved.