102 resultados para The selfish gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Huntington disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the HD gene on chromosome 4p16.3. A recent genome scan for genetic modifiers of age at onset of motor symptoms (AO) in HD suggests that one modifier may reside in the region close to the HD gene itself. We used data from 535 HD participants of the New England Huntington cohort and the HD MAPS cohort to assess whether AO was influenced by any of the three markers in the 4p16 region: MSX1 (Drosophila homeo box homologue 1, formerly known as homeo box 7, HOX7), Delta2642 (within the HD coding sequence), and BJ56 (D4S127). Suggestive evidence for an association was seen between MSX1 alleles and AO, after adjustment for normal CAG repeat, expanded repeat, and their product term (model P value 0.079). Of the variance of AO that was not accounted for by HD and normal CAG repeats, 0.8% could be attributed to the MSX1 genotype. Individuals with MSX1 genotype 3/3 tended to have younger AO. No association was found between Delta2642 (P=0.44) and BJ56 (P=0.73) and AO. This study supports previous studies suggesting that there may be a significant genetic modifier for AO in HD in the 4p16 region. Furthermore, the modifier may be present on both HD and normal chromosomes bearing the 3 allele of the MSX1 marker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular studies support pharmacological evidence that phosphoinositide signaling is perturbed in schizophrenia and bipolar disorder. The phosphatidylinositol-4-phosphate-5-kinase type-II alpha (PIP4K2A) gene is located on chromosome 10p12. This region has been implicated in both diseases by linkage, and PIP4K2A directly by association. Given linkage evidence in the Irish Study of High Density Schizophrenia Families (ISHDSF) to a region including 10p12, we performed an association study between genetic variants at PIP4K2A and disease. No association was detected through single-marker or haplotype analysis of the whole sample. However, stratification into families positive and negative for the ISHDSF schizophrenia high-risk haplotype (HRH) in the DTNBP1 gene and re-analysis for linkage showed reduced amplitude of the 10p12 linkage peak in the DTNBP1 HRH positive families. Association analysis of the stratified sample showed a trend toward association of PIP4K2A SNPs rs1417374 and rs1409395 with schizophrenia in the DTNBP1 HRH positive families. Despite this apparent paradox, our data may therefore suggest involvement of PIP4K2A in schizophrenia in those families for whom genetic variation in DTNBP1 appears also to be a risk factor. This trend appears to arise from under-transmission of common alleles to female cases. Follow-up association analysis in a large Irish schizophrenia case-control control sample (ICCSS) showed significant association with disease of a haplotype comprising these same SNPs rs1417374-rs1409395, again more so in affected females, and in cases with negative family history of the disease. This study supports a minor role for PIP4K2A in schizophrenia etiology in the Irish population. (C) 2009 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sex differences in schizophrenia are well known, but their genetic basis has not been identified. We performed a genome-wide association scan for schizophrenia in an Ashkenazi Jewish population using DNA pooling. We found a female-specific association with rs7341475, a SNP in the fourth intron of the reelin ( RELN) gene (p = 2.9 x 10(-5) in women), with a significant gene-sex effect (p = 1.8 x 10(-4)). We studied rs7341475 in four additional populations, totaling 2,274 cases and 4,401 controls. A significant effect was observed only in women, replicating the initial result (p = 2.1 x 10(-3) in women; p = 4.2 x 10(-3) for gene-sex interaction). Based on all populations the estimated relative risk of women carrying the common genotype is 1.58 (p = 8.8 x 10(-7); p = 1.6 x 10(-5) for gene-sex interaction). The female-specific association between RELN and schizophrenia is one of the few examples of a replicated sex-specific genetic association in any disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burkholderia cenocepacia is a member of the Burkholderia cepacia complex (Bcc), a group of Gram-negative opportunistic pathogens that cause severe lung infections in patients with cystic fibrosis and display extreme intrinsic resistance to antibiotics including antimicrobial peptides. B. cenocepacia BCAL2157 encodes a protein homologous to SuhB, an inositol-1-monophosphatase from Escherichia coli, which was suggested to participate in posttranscriptional control of gene expression. In this work we show that a deletion of the suhB-like gene in B. cenocepacia (?suhBBc) was associated with pleiotropic phenotypes. The ?suhBBc mutant had a growth defect manifested by an almost 2-fold increase in the generation time relative to the parental strain. The mutant also had a general defect in protein secretion, motility and biofilm formation. Further analysis of the Type-2 and the Type-6 secretion systems activities revealed that these secretion systems were inactive in the ?suhBBc mutant. In addition, the mutant exhibited increased susceptibility to polymyxin B but not to aminoglycosides like gentamicin and kanamycin. Together, our results demonstrate that suhBBc deletion compromises general protein secretion including the activity of T2SS and T6SS, and affects polymyxin B resistance, motility, and biofilm formation. The pleiotropic effects observed upon suhBBc deletion demonstrate that suhBBc plays a critical role in the physiology of B. cenocepacia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shigella flexneri 2a 2457T produces lipopolysaccharide (LPS) with two O-antigen (OAg) chain lengths: a short (S-OAg) controlled by WzzB and a very long (VL-OAg) determined by Wzz(pHS-2). This study demonstrates that the synthesis and length distribution of the S. flexneri OAg are under growth-phase-dependent regulation. Quantitative electrophoretic analysis showed that the VL-OAg increased during growth while the S-OAg distribution remained constant. Increased production of VL-OAg correlated with the growth-phase-regulated expression of the transcription elongation factor RfaH, and was severely impaired in a DeltarfaH mutant, which synthesized only low-molecular-mass OAg molecules and a small amount of S-OAg. Real-time RT-PCR revealed a drastic reduction of wzy polymerase gene expression in the DeltarfaH mutant. Complementation of this mutant with the wzy gene cloned into a high-copy-number plasmid restored the bimodal OAg distribution, suggesting that cellular levels of Wzy influence not only OAg polymerization but also chain-length distribution. Accordingly, overexpression of wzy in the wild-type strain resulted in production of a large amount of high-molecular-mass OAg molecules. An increased dosage of either wzzB or wzz(pHS-2) also altered OAg chain-length distribution. Transcription of wzzB and wzz(pHS-2) genes was regulated during bacterial growth but in an RfaH-independent manner. Overall, these findings indicate that expression of the wzy, wzzB and wzz(pHS-2) genes is finely regulated to determine an appropriate balance between the proteins responsible for polymerization and chain-length distribution of S. flexneri OAg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burkholderia cenocepacia, a bacterium commonly found in the environment, is an important opportunistic pathogen in patients with cystic fibrosis (CF). Very little is known about the mechanisms by which B. cenocepacia causes disease, but chronic infection of the airways in CF patients may be associated, at least in part, with the ability of this bacterium to survive within epithelial cells and macrophages. Survival in macrophages occurs in a membrane-bound compartment that is distinct from the lysosome, suggesting that B. cenocepacia prevents phagolysosomal fusion. In a previous study, we employed signature-tagged mutagenesis and an agar bead model of chronic pulmonary infection in rats to identify B. cenocepacia genes that are required for bacterial survival in vivo. One of the most significantly attenuated mutants had an insertion in the mgtC gene. Here, we show that mgtC is also needed for growth of B. cenocepacia in magnesium-depleted medium and for bacterial survival within murine macrophages. Using fluorescence microscopy, we demonstrated that B. cenocepacia mgtC mutants, unlike the parental isolate, colocalize with the fluorescent acidotropic probe LysoTracker Red. At 4 h postinfection, mgtC mutants expressing monomeric red fluorescent protein cannot retain this protein within the bacterial cytoplasm. Together, these results demonstrate that, unlike the parental strain, an mgtC mutant does not induce a delay in phagolysosomal fusion and the bacterium-containing vacuoles are rapidly targeted to the lysosome, where bacteria are destroyed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we demonstrate that the wbbD gene of the O7 lipopolysaccharide (LPS) biosynthesis cluster in Escherichia coli strain VW187 (O7:K1) encodes a galactosyltransferase involved in the synthesis of the O7-polysaccharide repeating unit. The galactosyltransferase catalyzed the transfer of Gal from UDP-Gal to the GlcNAc residue of a GlcNAc-pyrophosphate-lipid acceptor. A mutant strain with a defective wbbD gene was unable to form O7 LPS and lacked this specific galactosyltransferase activity. The normal phenotype was restored by complementing the mutant with the cloned wbbD gene. To characterize the WbbD galactosyltransferase, we used a novel acceptor substrate containing GlcNAcalpha-pyrophosphate covalently bound to a hydrophobic phenoxyundecyl moiety (GlcNAc alpha-O-PO(3)-PO(3)-(CH(2))(11)-O-phenyl). The WbbD galactosyltransferase had optimal activity at pH 7 in the presence of 2.5 mM MnCl(2). Detergents in the assay did not increase glycosyl transfer. Digestion of enzyme product by highly purified bovine testicular beta-galactosidase demonstrated a beta-linkage. Cleavage of product by pyrophosphatase and phosphatase, followed by HPLC and NMR analyses, revealed a disaccharide with the structure Gal beta1-3GlcNAc. Our results conclusively demonstrate that WbbD is a UDP-Gal: GlcNAcalpha-pyrophosphate-R beta1,3-galactosyltransferase and suggest that the novel synthetic glycolipid acceptor may be generally applicable to characterize other bacterial glycosyltransferases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus is a Gram-negative bacterium that preys on other Gram-negative bacteria. The lifecycle of B. bacteriovorus alternates between an extracellular flagellated and highly motile non-replicative attack-phase cell and a periplasmic non-flagellated growth-phase cell. The prey bacterium containing periplasmic bdellovibrios becomes spherical but osmotically stable, forming a structure known as the bdelloplast. After completing the growth phase, newly formed bdellovibrios regain their flagellum and escape the bdelloplast into the environment, where they encounter more prey bacteria. The obligate predatory nature of B. bacteriovorus imposes a major difficulty to introducing mutations in genes directly involved in predation, since these mutants could be non-viable. This work reports the cloning of the B. bacteriovorus 109J motAB operon, encoding proteins from the flagellar motor complex, and a genetic approach based on the expression of a motA antisense RNA fragment to downregulate motility. Periplasmic bdellovibrios carrying the plasmid expressing antisense RNA displayed a marked delay in escaping from bdelloplasts, while the released attack-phase cells showed altered motility. These observations suggest that a functionally intact flagellar motor is required for the predatory lifecycle of B. bacteriovorus. Also, the use of antisense RNA expression may be a useful genetic tool to study the Bdellovibrio developmental cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors previously reported increased expression of the Salmonella enterica serovar Typhi (S. typhi) rfaH gene when the bacterial cells reach stationary phase. In this study, using a lacZ fusion to the rfaH promoter region, they demonstrate that growth-dependent regulation of rfaH expression occurs at the level of transcription initiation. It was also observed that production of the lipopolysaccharide (LPS) O-antigen by S. typhi Ty2 correlated with the differential expression of rfaH during bacterial growth. This was probably due to the increased cellular levels of RfaH, since expression of the distal gene in the O-antigen gene cluster of S. typhi Ty2, wbaP, was also increased during stationary growth, as demonstrated by RT-PCR analysis. Examination of the sequences upstream of the rfaH coding region revealed homologies to potential binding sites for the RcsB/RcsA dimer of the RcsC/YopJ/RcsB phosphorelay regulatory system and for the RpoN alternative sigma factor. The expression of the rfaH gene in rpoN and rcsB mutants of S. typhi Ty2 was measured. The results indicate that inactivation of rpoN, but not of rcsB, suppresses the growth-phase-dependent induction of rfaH expression. Furthermore, production of beta-galactosidase mediated by the rfaH-lacZ fusion increased approximately fourfold when bacteria were grown in a nitrogen-limited medium. Nitrogen limitation was also shown to increase the expression of the O-antigen by the wild-type S. typhi Ty2, as demonstrated by a similar electrophoretic profile to that observed during the stationary phase of growth in rich media. It is therefore concluded that the relationship between LPS production and nitrogen limitation parallels the pattern of rfaH regulation under the control of RpoN and is consistent with the idea that RpoN modulates LPS formation via its effect on rfaH gene expression during bacterial growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intermediate steps in the biosynthesis of the ADP-L-glycero-D-manno-heptose precursor of inner core lipopolysaccharide (LPS) are not yet elucidated. We isolated a mini-Tn10 insertion that confers a heptoseless LPS phenotype in the chromosome of Escherichia coli K-12. The mutation was in a gene homologous to the previously reported rfaE gene from Haemophilus influenzae. The E. coli rfaE gene was cloned into an expression vector, and an in vitro transcription-translation experiment revealed a polypeptide of approximately 55 kDa in mass. Comparisons of the predicted amino acid sequence with other proteins in the database showed the presence of two clearly separate domains. Domain I (amino acids 1 to 318) shared structural features with members of the ribokinase family, while Domain II (amino acids 344 to 477) had conserved features of the cytidylyltransferase superfamily that includes the aut gene product of Ralstonia eutrophus. Each domain was expressed individually, demonstrating that only Domain I could complement the rfaE::Tn10 mutation in E. coli, as well as the rfaE543 mutation of Salmonella enterica SL1102. DNA sequencing of the rfaE543 gene revealed that Domain I had one amino acid substitution and a 12-bp in-frame deletion resulting in the loss of four amino acids, while Domain II remained intact. We also demonstrated that the aut::Tn5 mutation in R. eutrophus is associated with heptoseless LPS, and this phenotype was restored following the introduction of a plasmid expressing the E. coli Domain II. Thus, both domains of rfaE are functionally different and genetically separable confirming that the encoded protein is bifunctional. We propose that Domain I is involved in the synthesis of D-glycero-D-manno-heptose 1-phosphate, whereas Domain II catalyzes the ADP transfer to form ADP-D-glycero-D-manno-heptose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The O-repeating unit of the Escherichia coli O7-specific lipopolysaccharide is made of galactose, mannose, rhamnose, 4-acetamido-4,6-dideoxyglucose, and N-acetyglucosamine. We have recently characterized the genes involved in the biosynthesis of the sugar precursor GDP-mannose occurring in the E. coli O7:K1 strain VW187 (C. L. Marolda and M. A. Valvano, J. Bacteriol. 175:148-158, 1993). In the present study, we identified and sequenced the rfbBDAC genes encoding the enzymes for the biosynthesis of another precursor, dTDP-rhamnose. These genes are localized on the upstream end of the rfbEcO7 region, and they are strongly conserved compared with similar genes found in various enteric and nonenteric bacteria. Upstream of rfbB we identified a DNA segment containing the rfb promoter and a highly conserved untranslated leader sequence also present in the promoter regions of other surface polysaccharide gene clusters. Also, we have determined that rfbB and rfbA have homologs, rffG (o355) and rffH (o292), respectively, located on the rff cluster, which is involved in the synthesis of enterobacterial common antigen. We provide biochemical evidence that rffG and rffH encode dTDP-glucose dehydratase and glucose-1-phosphate thymidylyltransferase activities, respectively, and we also show that rffG complemented the rfbB defect in the O7+ cosmid pJHCV32. We also demonstrate that rffG is distinct from rffE and map the rffE gene to the second gene of the rff cluster.