69 resultados para Technological physics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article investigates the relationships between technological regimes and firm-level productivity performance, and it explores how such a relationship differs in different Schumpeterian patterns of innovation. The analysis makes use of a rich dataset containing data on innovation and other economic characteristics of a large representative sample of Norwegian firms in manufacturing and service industries for the period 1998–2004. First, we decompose TFP growth into technical progress and efficiency changes by means of data envelopment analysis. We then estimate an empirical model that relates these two productivity components to the characteristics of technological regimes and a set of other firm-specific factors. The results indicate that: (i) TFP growth has mainly been achieved through technical progress, while technical efficiency has on average decreased; (ii) the characteristics of technological regimes are important determinants of firm-level productivity growth, but their impacts on technical progress are different from the effects on efficiency change; (iii) the estimated model works differently in the two Schumpeterian regimes. Technical progress has been more dynamic in Schumpeter Mark II industries, while efficiency change has been more important in Schumpeter Mark I markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High power lasers are a tool that can be used to determine important parameters in the context of Warm Dense Matter, i.e. at the convergence of low-temperature plasma physics and finite-temperature condensed matter physics. Recent results concerning planet inner core materials such as water and iron are presented. We determined the equation of state, temperature and index of refraction of water for pressures up to 7 Mbar. The release state of iron in a LiF window allowed us to investigate the melting temperature near the inner core boundary conditions. Finally, the first application of proton radiography to the study of shocked material is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon on Insulator (SOI) substrates offer a promising platform for monolithic high energy physics detectors with integrated read-out electronics and pixel diodes. This paper describes the fabrication and characterisation of specially-configured SOI substrates using improved bonded wafer ion split and grind/polish technologies. The crucial interface between the high resistivity handle silicon and the SOI buried oxide has been characterised using both pixel diodes and circular geometry MOS transistors. Pixel diode breakdown voltages were typically greater than 100V and average leakage current densities at 70 V were only 55 nA/ sq cm. MOS transistors subjected to 24 GeV proton irradiation showed an increased SOI buried oxide trapped charge of only 3.45x1011cn-2 for a dose of 2.7Mrad

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A report is presented of the XIIth International Workshop on Positron and Positronium Physics (Sandbjerg, Denmark, 19-21 July 2003). This workshop covered positron and positronium interactions with atoms, molecules and condensed matter systems. One key development reported was the first creation in the laboratory of low-energy antihydrogen atoms. Facets of positron-electron many-body systems were also considered, including the positronium molecule and BEC gases of positronium atoms. Aspects of the future of the field were discussed, including the development of new theoretical and experimental capabilities.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the deployment on GPUs of PROP, a program of the 2DRMP suite which models electron collisions with H-like atoms and ions. Because performance on GPUs is better in single precision than in double precision, the numerical stability of the PROP program in single precision has been studied. The numerical quality of PROP results computed in single precision and their impact on the next program of the 2DRMP suite has been analyzed. Successive versions of the PROP program on GPUs have been developed in order to improve its performance. Particular attention has been paid to the optimization of data transfers and of linear algebra operations. Performance obtained on several architectures (including NVIDIA Fermi) are presented.