50 resultados para Techniques: Image Processing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Quantitative examination of prostate histology offers clues in the diagnostic classification of lesions and in the prediction of response to treatment and prognosis. To facilitate the collection of quantitative data, the development of machine vision systems is necessary. This study explored the use of imaging for identifying tissue abnormalities in prostate histology. Medium-power histological scenes were recorded from whole-mount radical prostatectomy sections at × 40 objective magnification and assessed by a pathologist as exhibiting stroma, normal tissue (nonneoplastic epithelial component), or prostatic carcinoma (PCa). A machine vision system was developed that divided the scenes into subregions of 100 × 100 pixels and subjected each to image-processing techniques. Analysis of morphological characteristics allowed the identification of normal tissue. Analysis of image texture demonstrated that Haralick feature 4 was the most suitable for discriminating stroma from PCa. Using these morphological and texture measurements, it was possible to define a classification scheme for each subregion. The machine vision system is designed to integrate these classification rules and generate digital maps of tissue composition from the classification of subregions; 79.3% of subregions were correctly classified. Established classification rates have demonstrated the validity of the methodology on small scenes; a logical extension was to apply the methodology to whole slide images via scanning technology. The machine vision system is capable of classifying these images. The machine vision system developed in this project facilitates the exploration of morphological and texture characteristics in quantifying tissue composition. It also illustrates the potential of quantitative methods to provide highly discriminatory information in the automated identification of prostatic lesions using computer vision.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a parallel-matching processor architecture with early jump-out (EJO) control is proposed to carry out high-speed biometric fingerprint database retrieval. The processor performs the fingerprint retrieval by using minutia point matching. An EJO method is applied to the proposed architecture to speed up the large database retrieval. The processor is implemented on a Xilinx Virtex-E, and occupies 6,825 slices and runs at up to 65 MHz. The software/hardware co-simulation benchmark with a database of 10,000 fingerprints verifies that the matching speed can achieve the rate of up to 1.22 million fingerprints per second. EJO results in about a 22% gain in computing efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of image processing techniques to assess the performance of airport landing lighting using images of it collected from an aircraft-mounted camera is documented. In order to assess the performance of the lighting, it is necessary to uniquely identify each luminaire within an image and then track the luminaires through the entire sequence and store the relevant information for each luminaire, that is, the total number of pixels that each luminaire covers and the total grey level of these pixels. This pixel grey level can then be used for performance assessment. The authors propose a robust model-based (MB) featurematching technique by which the performance is assessed. The development of this matching technique is the key to the automated performance assessment of airport lighting. The MB matching technique utilises projective geometry in addition to accurate template of the 3D model of a landing-lighting system. The template is projected onto the image data and an optimum match found, using nonlinear least-squares optimisation. The MB matching software is compared with standard feature extraction and tracking techniques known within the community, these being the Kanade–Lucus–Tomasi (KLT) and scaleinvariant feature transform (SIFT) techniques. The new MB matching technique compares favourably with the SIFT and KLT feature-tracking alternatives. As such, it provides a solid foundation to achieve the central aim of this research which is to automatically assess the performance of airport lighting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces an automated computer- assisted system for the diagnosis of cervical intraepithelial neoplasia (CIN) using ultra-large cervical histological digital slides. The system contains two parts: the segmentation of squamous epithelium and the diagnosis of CIN. For the segmentation, to reduce processing time, a multiresolution method is developed. The squamous epithelium layer is first segmented at a low (2X) resolution. The boundaries are further fine tuned at a higher (20X) resolution. The block-based segmentation method uses robust texture feature vectors in combination with support vector machines (SVMs) to perform classification. Medical rules are finally applied. In testing, segmentation using 31 digital slides achieves 94.25% accuracy. For the diagnosis of CIN, changes in nuclei structure and morphology along lines perpendicular to the main axis of the squamous epithelium are quantified and classified. Using multi-category SVM, perpendicular lines are classified into Normal, CIN I, CIN II, and CIN III. The robustness of the system in term of regional diagnosis is measured against pathologists' diagnoses and inter-observer variability between two pathologists is considered. Initial results suggest that the system has potential as a tool both to assist in pathologists' diagnoses, and in training.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present a new approach to visual speech recognition which improves contextual modelling by combining Inter-Frame Dependent and Hidden Markov Models. This approach captures contextual information in visual speech that may be lost using a Hidden Markov Model alone. We apply contextual modelling to a large speaker independent isolated digit recognition task, and compare our approach to two commonly adopted feature based techniques for incorporating speech dynamics. Results are presented from baseline feature based systems and the combined modelling technique. We illustrate that both of these techniques achieve similar levels of performance when used independently. However significant improvements in performance can be achieved through a combination of the two. In particular we report an improvement in excess of 17% relative Word Error Rate in comparison to our best baseline system.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An approach to spatialization is described in which the pixels of an image determine both spatial and other attributes of individual elements in a multi-channel musical texture. The application of this technique in the author’s composition Spaced Images with Noise and Lines is discussed in detail. The relationship of this technique to existing image-to-sound mappings is discussed. The particular advantage of modifying spatial properties with image filters is considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Measures of icon designs rely heavily on surveys of the perceptions of population samples. Thus, measuring the extent to which changes in the structure of an icon will alter its perceived complexity can be costly and slow. An automated system capable of producing reliable estimates of perceived complexity could reduce development costs and time. Measures of icon complexity developed by Garcia, Badre, and Stasko (1994) and McDougall, Curry, and de Bruijn (1999) were correlated with six icon properties measured using Matlab (MathWorks, 2001) software, which uses image-processing techniques to measure icon properties. The six icon properties measured were icon foreground, the number of objects in an icon, the number of holes in those objects, and two calculations of icon edges and homogeneity in icon structure. The strongest correlates with human judgments of perceived icon complexity (McDougall et al., 1999) were structural variability (r(s) = .65) and edge information (r(s) =.64).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we propose a multi-camera application capable of processing high resolution images and extracting features based on colors patterns over graphic processing units (GPU). The goal is to work in real time under the uncontrolled environment of a sport event like a football match. Since football players are composed for diverse and complex color patterns, a Gaussian Mixture Models (GMM) is applied as segmentation paradigm, in order to analyze sport live images and video. Optimization techniques have also been applied over the C++ implementation using profiling tools focused on high performance. Time consuming tasks were implemented over NVIDIA's CUDA platform, and later restructured and enhanced, speeding up the whole process significantly. Our resulting code is around 4-11 times faster on a low cost GPU than a highly optimized C++ version on a central processing unit (CPU) over the same data. Real time has been obtained processing until 64 frames per second. An important conclusion derived from our study is the scalability of the application to the number of cores on the GPU. © 2011 Springer-Verlag.