196 resultados para Tear strength


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of surface hydrogenation reactivity is a prevailing issue in chemistry and vital to the rational design of future catalysts. In this density-functional theory study, we address hydrogenation reactivity by examining the reaction pathways for N+H -> NH and NH+H -> NH2 over the close-packed surfaces of the 4d transition metals from Zr-Pd. It is found that the minimum-energy reaction pathway is dictated by the ease with which H can relocate between hollow-site and top-site adsorption geometries. A transition state where H is close to a top site reduces the instability associated with bond sharing of metal atoms by H and N (NH) (bonding competition). However, if the energy difference between hollow-site and top-site adsorption energies (Delta E-H) is large this type of transition state is unfavorable. Thus we have determined that hydrogenation reactivity is primarily controlled by the potential-energy surface of H on the metal, which is approximated by Delta E-H, and that the strength of N (NH) chemisorption energy is of less importance. Delta E-H has also enabled us to make predictions regarding the structure sensitivity of these reactions. Furthermore, we have found that the degree of bonding competition at the transition state is responsible for the trend in reaction barriers (E-a) across the transition series. When this effect is quantified a very good linear correlation is found with E-a. In addition, we find that when considering a particular type of reaction pathway, a good linear correlation is found between the destabilizing effects of bonding competition at the transition state and the strength of the forming N-H (HN-H) bond. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption behavior of C.I. Reactive Blue 2, C.I. Reactive Red 4, and C.I. Reactive Yellow 2 from aqueous solution onto activated carbon was investigated under various experimental conditions. The adsorption capacity of activated carbon for reactive dyes was found to be relatively high. At pH 7.0 and 298 K, the maximum adsorption capacity for C.I. Reactive Blue 2, C.I. Reactive Yellow 2 and C.I. Reactive Red 4 dyes was found to be 0.27, 0.24, and 0.11 mmol/g, respectively. The shape of the adsorption isotherms indicated an L2-type isotherm according to the Giles and Smith classification. The experimental adsorption data showed good correlation with the Langmuir and Ferundlich isotherm models. Further analysis indicated that the formation of a complete monolayer was not achieved, with the fraction of surface coverage found to be 0.45, 0.42, and 0.22 for C.I. Reactive Blue 2, C.I. Reactive Yellow 2 and C.I. Reactive Red 4 dyes, respectively. Experimental data indicated that the adsorption capacity of activated carbon for the dyes was higher in acidic rather than in basic solutions, and further indicated that the removal of dye increased with increase in the ionic strength of solution, this was attributed to aggregation of reactive dyes in solution. Thermodynamic studies indicated that the adsorption of reactive dyes onto activated carbon was an endothermic process. The adsorption enthalpy (?H) for C.I. Reactive Blue 2 and C.I. Reactive Yellow 2 dyes were calculated at 42.2 and 36.2 kJ/mol, respectively. The negative values of free energy (?G) determined for these systems indicated that adsorption of reactive dyes was spontaneous at the temperatures under investigation (298-328 K). © 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously we have shown that organic solutes can be extracted from ionic liquids (ILs) with supercritical CO2 and that ILs can be induced to separate from organic and aqueous mixtures by applying gaseous CO2 pressure. Thus, we are interested in the solvent strength of IL/CO2 mixtures. Here we use 4-nitroaniline, N,N-diethyl-4-nitroaniline and Reichardt's dye 33 to determine the Kamlet-Taft parameters for four different imidazolium based ILs and their mixtures with CO2 at 25 and 40degreesC. The effect of temperature and carbon dioxide concentration on these parameters was determined. The polarizability parameter depends weakly on the CO2 concentration. However, the hydrogen bond donating ability and the hydrogen bond accepting ability are virtually independent Of CO2 pressure. The results indicate that the strong interactions between ILs and probe molecules are not influenced by CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete used for underwater repair is often proportioned to spread readily into place and self-consolidate, and to develop high resistance to segregation and water dilution. An investigation was carried out to determine the effect of the dosage of antiwashout admixture, water-cementitious materials ratio (w/cm), and binder composition on the relative residual strength of highly flowable underwater concrete. Two types of antiwashout admixtures were used: a powdered welan gum at 0.07 and 0.15% by mass of binder, and a liquid-based cellulosic admixture employed at a high dosage of 1 to 1.65 L/100 kg of cementitious materials. The w/cms were set at 0.41 and 0.47 to secure adequate performance of underwater concrete for construction and repair. Four binder compositions were used: a Canadian Type 10 cement; a cement with 10% silica fume replacement; a cement with 50% replacement of granulated blast-furnace slag; and a ternary binder containing 6% silica fume and 20% Class F fly ash. Test results indicate that for a given washout mass loss and slump flow consistency, greater relative residual strength can be secured when the dosage of antiwashout admixture is increased, the w/cm is reduced, and a binary binder with 10% silica fume substitution or the ternary binder are employed. Such mixtures can develop relative residual compressive strengths of 85 and 80%, compared to mixtures cast in air, when the value of washout loss is limited to 4 and 6% for mixtures with slump flow values of 450 and 550 mm, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The delamination or splitting of mechanical test specimens of rolled steel plate is a phenomenon that has been studied for many years. In the present study, splitting during fracture of tensile and Charpy V-notch (CVN) test specimens is examined in a high-strength low-alloy plate steel. It is shown that delamination did not occur in test specimens from plate in the as-rolled condition, but was severe in material tempered in the temperature range 500 °C to 650 °C. Minor splitting was seen after heating to 200 °C, 400 °C, and 700 °C. Samples that had been triple quenched and tempered to produce a fine equiaxed grain size also did not exhibit splitting. Microstructural and preferred orientation studies are presented and are discussed as they relate to the splitting phenomenon. It is concluded that the elongated as-rolled grains and grain boundary embrittlement resulting from precipitates (carbides and nitrides) formed during reheating were responsible for the delamination.