42 resultados para TENSILE BOND STRENGTH


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously we have shown that organic solutes can be extracted from ionic liquids (ILs) with supercritical CO2 and that ILs can be induced to separate from organic and aqueous mixtures by applying gaseous CO2 pressure. Thus, we are interested in the solvent strength of IL/CO2 mixtures. Here we use 4-nitroaniline, N,N-diethyl-4-nitroaniline and Reichardt's dye 33 to determine the Kamlet-Taft parameters for four different imidazolium based ILs and their mixtures with CO2 at 25 and 40degreesC. The effect of temperature and carbon dioxide concentration on these parameters was determined. The polarizability parameter depends weakly on the CO2 concentration. However, the hydrogen bond donating ability and the hydrogen bond accepting ability are virtually independent Of CO2 pressure. The results indicate that the strong interactions between ILs and probe molecules are not influenced by CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The delamination or splitting of mechanical test specimens of rolled steel plate is a phenomenon that has been studied for many years. In the present study, splitting during fracture of tensile and Charpy V-notch (CVN) test specimens is examined in a high-strength low-alloy plate steel. It is shown that delamination did not occur in test specimens from plate in the as-rolled condition, but was severe in material tempered in the temperature range 500 °C to 650 °C. Minor splitting was seen after heating to 200 °C, 400 °C, and 700 °C. Samples that had been triple quenched and tempered to produce a fine equiaxed grain size also did not exhibit splitting. Microstructural and preferred orientation studies are presented and are discussed as they relate to the splitting phenomenon. It is concluded that the elongated as-rolled grains and grain boundary embrittlement resulting from precipitates (carbides and nitrides) formed during reheating were responsible for the delamination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This limited experimental investigation examined the relationships between the compressive strengths of cubes, cylinders, cores and the estimated compressive strengths derived from pull-off tests for a relatively low-strength structural-grade concrete (<35 N/mm2). Test specimens were cast and tested at 7, 14, 28, 56 and 84 days. The relationships of the trends of the test results to the trends of results of standard cube specimens and standard cylinder specimens were compared. It was found that the mean strength of each type of specimen tended to increase as a function of the natural logarithm of the specimen age. The mean strength of cylinders of length/diameter ratio 2.0 was found to be slightly greater (by about 7.5%) than the generally accepted value of 80% of the mean cube strength. Core results were corrected using correction factors defined in BS 6089 and the UK national annex to BS EN 12504-1. The mean corrected cube strength of cores taken from cubes was approximately 12% greater than the mean companion cube strength. The mean corrected cylinder strength of cores taken from cubes was approximately 5% greater than the mean companion cylinder strength. The potential cube and cylinder strengths of cores taken from slabs cured under different environmental conditions correlated well with companion cube and cylinder strengths respectively at 28 days. The pull-off test results gave a variable but, on average, slightly conservative estimate of the cube compressive strength of the relatively low-strength structural-grade concrete, using a simple general linear estimated compressive cube strength to tensile strength correlation factor of 10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental research addressing the effects of concrete composition and strength on anchorage bond behavior of prestressing reinforcement is presented to clarify the effect of material properties that have appeared contradictory in previous literature. Bond stresses and anchorage lengths have been obtained in twelve concrete mixes made up of different cement contents (C) – 350 to 500 kg/m3 – and water/cement (w/c) ratios – 0.3 to 0.5 – with compressive strength at 24 h ranging from 24 to 55 MPa. A testing technique based on measuring the prestressing force in specimens with different embedment lengths has been used. The results show that anchorage length increases when w/c increases, more significantly when C is higher; the effect of C reveals different trends based on w/c. The obtained anchorage bond stresses are greater for higher concrete compressive strength, and their average ratio of 1.45 with respect to transmission bond stresses implies a potential bond capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To determine, by means of static fracture testing the effect of the tooth preparation design and the elastic modulus of the cement on the structural integrity of the cemented machined ceramic crown-tooth complex. 
Methods: Human maxillary extracted premolar teeth were prepared for all-ceramic crowns using two preparation designs; a standard preparation in accordance with established protocols and a novel design with a flat occlusal design. All-ceramic feldspathic (Vita MK II) crowns were milled for all the preparations using a CAD/CAM system (CEREC-3). The machined all-ceramic crowns were resin bonded to the tooth structure using one of three cements with different elastic moduli: Super-Bond C&B, Rely X Unicem and Panavia F 2.0. The specimens were subjected to compressive force through a 4 mm diameter steel ball at a crosshead speed of 1 mm/min using a universal test machine (Loyds Instrument Model LRX.). The load at the fracture point was recorded for each specimen in Newtons (N). These values were compared to a control group of unprepared/unrestored teeth. 
Results: There was a significant difference between the control group, with higher fracture strength, and the cemented samples regardless of the occlusal design and the type of resin cement. There was no significant difference in mean fracture load between the two designs of occlusal preparation using Super-Bond C&B. For the Rely X Unicem and Panavia F 2.0 cements, the proposed preparation design with a flat occlusal morphology provides a system with increased fracture strength
Significance: The proposed novel flat design showed less dependency on the resin cement selection in relation to the fracture strength of the restored tooth. The choice of the cement resin, with respect to its modulus of elasticity, is more important in the anatomic design than in the flat design. © 2013 Academy of Dental Materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behaviour of syntactic foam is strongly dependent on temperature and strain rate. This research focuses on the behaviour of syntactic foam made of epoxy and glass microballoons in the glassy, transition and rubbery regions. Both epoxy and epoxy foam are investigated separately under tension and shear loadings in order to study the strain rate and temperature effects. The results indicate that the strength and strain to failure data can be collapsed onto master curves depending on temperature reduced strain rate. The highest strain to failure occurs in the transition zone. The presence of glass microballoons reduces the strain to failure over the entire range considered, an effect that is particularly significant under tensile loading. However, as the microballoons increase the elastic modulus significantly in the rubbery zone but reduce it somewhat in the glassy zone, the effect on the strength is more complicated. Different failure mechanisms are identified over the temperature-frequency range considered. As the temperature reduced strain rate is decreased, the failure mechanism changes from microballoon fracture to matrix fracture and debonding between the matrix and microballoons. © IMechE 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructure, tensile properties and fractography have been examined in the oil-quenched samples of a low-alloy ultrahigh strength 4340 steel. Intergranular fracture was revealed to locate at the fracture origin. However, neither the quenched Charpy V-notched impact samples nor the tempered tensile samples showed such intergranular fracture behavior. The effects of loading rate and precipitation are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium has good biocompatibility and so its alloys are used as implant materials, but they suffer from having poor wear resistance. This research aims to improve the wear resistance and the tensile strength of titanium alloys potentially for implant applications. Titanium alloys Ti–6Al–4V and Ti–6Al–7Nb were subjected to shotpeening process to study the wear and tensile behavior. An improvement in the wear resistance has been achieved due to surface hardening of these alloys by the process of shotpeening. Surface microhardness of shotpeened Ti–6Al–4V and Ti–6Al–7Nb alloys has increased by 113 and 58 HV(0.5), respectively. After shotpeening, ultimate tensile strength of Ti–6Al–4V increased from 1000 MPa to 1150 MPa, higher than improvement obtained for heat treated titanium specimens. The results confirm that shotpeening pre-treatment improved tensile and sliding wear behavior of Ti–6Al–4V and Ti–6Al–7Nb alloys. In addition, shotpeening increased surface roughness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bonded-in rod connections in timber possess many desirable attributes in terms of efficiency, manufacture, performance, aesthetics and cost. In recent years research has been conducted on such connections using fibre reinforced polymers (FRPs) as an alternative to steel. This research programme investigates the pull-out capacity of Basalt FRP rods bonded-in in low grade Irish Sitka Spruce. Embedded length is thought to be the most influential variable contributing to pull- out capacity of bonded-in rods after rod diameter. Previous work has established an optimum embedded length of 15 times the hole diameter. However, this work only considered the effects of axial stress on the bond using a pull-compression testing system which may have given an artificially high pull out capacity as bending effects were neglected. A hinge system was utilised that allows the effects of bending force to be taken in to consideration along with axial forces in a pull-out test. This paper describes an experimental programme where such pull-bending tests were carried out on samples constructed of 12mm diameter BFRP bars with a 2mm glueline thickness and embedded lengths between 80mm and 280mm bonded-in to low-grade timber with an epoxy resin. Nine repetitions of each were tested. A clear increase in pull-out strength was found with increasing embedded length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a study on the bond behaviour of FRP-concrete bonded joints under static and dynamic loadings, by developing a meso-scale finite element model using the K&C concrete damage model in LS-DYNA. A significant number of single shear experiments under static pull-off loading were modelled with an extensive parametric study covering key factors in the K&C model, including the crack band width, the compressive fracture energy and the shear dilatation factor. It is demonstrated that the developed model can satisfactorily simulate the static debonding behaviour, in terms of mesh objectivity, the load-carrying capacity and the local bond-slip behaviour, provided that proper consideration is given to the selection of crack band width and shear dilatation factor. A preliminary study of the effect of the dynamic loading rate on the debonding behaviour was also conducted by considering a dynamic increase factor (DIF) for the concrete strength as a function of strain rate. It is shown that a higher loading rate leads to a higher load-carrying capacity, a longer effective bond length, and a larger damaged area of concrete in the single shear loading scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim. To investigate (a) variability in powder/liquid proportioning and (b) effect of variability on diametral tensile strength (DTS), in a zinc phosphate cement. Statistical analyses (α = 0.05) were by Student's t-test in the case of powder/liquid ratio and one-way ANOVA and Tukey HSD for pair-wise comparisons of mean DTS. The Null hypotheses were that (a) the powder-liquid mixing ratios would not differ from the manufacturer's recommended ratio (b) DTS of the set cement samples using the extreme powder/liquid ratios would not differ from those made using the recommended ratio. 

Methodology. 34 dental students dispensed the components according to the manufacturer's instructions. The maximum and minimum powder/liquid ratios, together with the manufacturer's recommended ratio, were used to prepare samples for DTS testing. 

Results. Powder/liquid ratios ranged from 2.386 to 1.018. The mean ratio (1.644) was not significantly different from the recommended value of 1.718 (P = 0.189). DTS values for the maximum and minimum ratios were both significantly different from each other (P < 0.001) and from the mean value obtained from the recommended ratio (P < 0.001). 

Conclusions. Variability exists in powder/liquid ratio for hand dispensed zinc phosphate cement. This variability can affect the DTS of the set material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This short communication presents a research update of a new low nickel maraging steel, Fe–12.94%Ni–1.61%Al–1.01%Mo–0.23%Nb (wt%). Its yield stress and the tensile strength are 1080 MPa and 1180 MPa, respectively, after ageing treatment. Tensile specimens show ductile fracture. Fractography demonstrated deep dimples. Impact energy is 22 J on half-size specimens.