169 resultados para Synovitis, Infectious.
Measles virus superinfection immunity and receptor redistribution in persistently infected NT2 cells
Resumo:
A recombinant measles virus (MV) expressing red fluorescent protein (MVDsRed1) was used to produce a persistently infected cell line (piNT2-MVDsRed1) from human neural precursor (NT2) cells. A similar cell line (piNT2-MVeGFP) was generated using a virus that expresses enhanced green fluorescent protein. Intracytoplasmic inclusions containing the viral nucleocapsid protein were evident in all cells and viral glycoproteins were present at the cell surface. Nevertheless, the cells did not release infectious virus nor did they fuse to generate syncytia. Uninfected NT2 cells express the MV receptor CD46 uniformly over their surface, whereas CD46 was present in cell surface aggregates in the piNT2 cells. There was no decrease in the overall amount of CD46 in piNT2 compared to NT2 cells. Cell-to-cell fusion was observed when piNT2 cells were overlaid onto confluent monolayers of MV receptor-positive cells, indicating that the viral glycoproteins were correctly folded and processed. Infectious virus was released from the underlying cells, indicating that persistence was not due to gross mutations in the virus genome. Persistently infected cells were superinfected with MV or canine distemper virus and cytopathic effects were not observed. However, mumps virus could readily infect the cells, indicating that superinfection immunity is not caused by general soluble antiviral factors. As MVeGFP and MVDsRed1 are antigenically indistinguishable but phenotypically distinct it was possible to use them to measure the degree of superinfection immunity in the absence of any cytopathic effect. Only small numbers of non-fusing green fluorescent piNT2-MVDsRed1 cells (1 : 300 000) were identified in which superinfecting MVeGFP entered, replicated and expressed its genes.
Resumo:
Langerhans cells (LCs) are prominent dendritic cells (DCs) in epithelia, but their role in immunity is poorly defined. To track and discriminate LCs from dermal DCs in vivo, we developed knockin mice expressing enhanced green fluorescent protein (EGFP) under the control of the langerin (CD207) gene. By using vital imaging, we showed that most EGFP(+) LCs were sessile under steady-state conditions, whereas skin inflammation induced LC motility and emigration to lymph nodes (LNs). After skin immunization, dermal DCs arrived in LNs first and colonized areas distinct from slower migrating LCs. LCs reaching LNs under steady-state or inflammatory conditions expressed similar levels of costimulatory molecules. Langerin and EGFP were also expressed on thymic DCs and on blood-derived, CD8alpha(+) DCs from all secondary lymphoid organs. By using a similar knockin strategy involving a diphtheria toxin receptor (DTR) fused to EGFP, we demonstrated that LCs were dispensable for triggering hapten-specific T cell effectors through skin immunization.
Resumo:
A novel recombinant respiratory syncytial virus (RSV) subunit vaccine, designated BBG2Na, was administered to 108 healthy adults randomly assigned to receive 10, 100, or 300 μg of BBG2Na in aluminum phosphate or saline placebo. Each subject received 1, 2, or 3 intramuscular injections of the assigned dose at monthly intervals. Local and systemic reactions were mild, and no evidence of harmful properties of BBG2Na was reported. The highest ELISA and virus-neutralizing (VN) antibody responses were evident in the 100- and 300-μg groups; second or third injections provided no significant boosts against RSV-derived antigens. BBG2Na induced ⩾2-fold and ⩾4-fold increases in G2Na-specific ELISA units in up to 100% and 57% of subjects, respectively; corresponding RSV-A–specific responses were 89% and 67%. Furthermore, up to 71% of subjects had ⩾2-fold VN titer increases. Antibody responses to 2 murine lung protective epitopes were also highly boosted after vaccination. Therefore, BBG2Na is safe, well tolerated, and highly immunogenic in RSV-seropositive adults
Resumo:
Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.
Resumo:
Fasciola hepatica secretes cathepsin L proteases that facilitate the penetration of the parasite through the tissues of its host, and also participate in functions such as feeding and immune evasion. The major proteases, cathepsin L1 (FheCL1) and cathepsin L2 (FheCL2) are members of a lineage that gave rise to the human cathepsin Ls, Ks and Ss, but while they exhibit similarities in their substrate specificities to these enzymes they differ in having a wider pH range for activity and an enhanced stability at neutral pH. There are presently 13 Fasciola cathepsin L cDNAs deposited in the public databases representing a gene family of at least seven distinct members, although the temporal and spatial expression of each of these members in the developmental stage of F. hepatica remains unclear. Immunolocalisation and in situ hybridisation studies, using antibody and DNA probes, respectively, show that the vast majority of cathepsin L gene expression is carried out in the epithelial cells lining the parasite gut. Within these cells the enzyme is packaged into secretory vesicles that release their contents into the gut lumen for the purpose of degrading ingested host tissue and blood. Liver flukes also express a novel multi-domain cystatin that may be involved in the regulation of cathepsin L activity. Vaccine trials in both sheep and cattle with purified native FheCL1 and FheCL2 have shown that these enzymes can induce protection, ranging from 33 to 79%, to experimental challenge with metacercariae of F. hepatica, and very potent anti-embryonation/hatch rate effects that would block parasite transmission. In this article we review the vaccine trials carried out over the past 8 years, the role of antibody and T cell responses in mediating protection and discuss the prospects of the cathepsin Ls in the development of first generation recombinant liver fluke vaccines. Author Keywords: Helminths; Trematodes; Parasites; Cathepsins; Proteases; Vaccines; Immunology; Biochemistry
Resumo:
Confocal microscopy interfaced with cytochemical procedures has been used to monitor development of the major muscle systems and associated serotoninergic (5-HT, 5-hydroxytryptamine) and peptidergic (FaRP, FMRFamide-related peptide) innervation of the strigeid trematodes, Apatemon cobitidis proterorhini and Cotylurus erraticus during cultivation in vitro. Sexually undifferentiated metacercariae were successfully grown to ovigerous adults using tissue culture medium NCTC 135, chicken serum and egg albumen. Eggs were produced after 5 days in culture but had abnormal shells and failed to embryonate. 5-HT and FaRP (the flatworm FaRP, GYIRFamide) were localised immunocytochemically in both central and peripheral nervous systems of developing worms. During cultivation, the central serotoninergic and FaRPergic neuronal pathways of the forebody became more extensive, but retained the same basic orthogonal arrangement as found in the excysted metacercaria. Longitudinal extensor and flexor muscles of the hindbody provide support for the developing reproductive complex. The male reproductive tracts were established in advance (day 3) of those of the female system (day 4); completion of the latter was marked by the appearance of the ootype/egg chamber. The inner longitudinal muscle fibres of the female tract appeared prior to the outer and more densely arranged circular muscles. Circular fibres dominate the muscle complement of both alimentary and reproductive tracts. 5-HT- and GYIRFamide-immunoreactivities were demonstrable in the central nervous system (CNS) and subtegumental parasympathetic nervous system (PNS) throughout the culture period, but innervation of the developing reproductive structures was reactive just for 5-HT. Only at the onset of egg production was FaRP-IR observed in the reproductive system and was expressed only in the innervation of the ootype, a finding consistent with the view that FaRPs may regulate egg assembly in platyhelminths.
Resumo:
In its freshwater amphipod host Gammarus duebeni celticus, the microsporidian parasite Pleistophora mulleri showed 23% transmission efficiency when uninfected individuals were fed infected tissue, but 0% transmission by water-borne and coprophagous routes. Cannibalism between unparasitised and parasitised individuals was significantly in favour of the former (37% compared to 0%). In addition, cannibalism between parasitised individuals was significantly higher than between unparasitised individuals (27% compared to 0%). Thus, parasitised individuals were more likely to be cannibalised by both unparasitised and parasitised individuals. We discuss the conflicting selective forces within this host/parasite relationship, the implications of parasite mediated cannibalism for host population structure and the impacts this may have on the wider aquatic community.