166 resultados para Sun: incompressible waves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the modulational instability of nonlinearly interacting two-dimensional waves in deep water, which are described by a pair of two-dimensional coupled nonlinear Schrodinger equations. We derive a nonlinear dispersion relation. The latter is numerically analyzed to obtain the regions and the associated growth rates of the modulational instability. Furthermore, we follow the long term evolution of the latter by means of computer simulations of the governing nonlinear equations and demonstrate the formation of localized coherent wave envelopes. Our results should be useful for understanding the formation and nonlinear propagation characteristics of large-amplitude freak waves in deep water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical and numerical studies are carried out of the nonlinear amplitude modulation of dust-ion acoustic waves propagating in an unmagnetized weakly coupled plasma comprised of electrons, positive ions, and charged dust grains, considering perturbations oblique to the carrier wave propagation direction. The stability analysis, based on a nonlinear Schrodinger-type equation, exhibits a wide instability region, which depends on both the angle theta between the modulation and propagation directions and the dust number density n(d). Explicit expressions for the instability increment and threshold are obtained. The possibility and conditions for the existence of different types of localized excitations are also discussed. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear propagation of ion-sound waves in a collisionless dense electron-ion magnetoplasma is investigated. The inertialess electrons are assumed to follow a non-Boltzmann distribution due to the pressure for the Fermi plasma and the ions are described by the hydrodynamic (HD) equations. An energy balance-like equation involving a new Sagdeev-type pseudo-potential is derived in the presence of the quantum statistical effects. Numerical calculations reveal that the profiles of the Sagdeev-like potential and the ion-sound density excitations are significantly affected by the wave direction cosine and the Mach number. The present studies might be helpful to understand the excitation of nonlinear ion-sound waves in dense plasmas such as those in superdense white dwarfs and neutron stars as well as in intense laser-solid density plasma experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear propagation of finite amplitude ion acoustic solitary waves in a plasma consisting of adiabatic warm ions, nonisothermal electrons, and a weakly relativistic electron beam is studied via a two-fluid model. A multiple scales technique is employed to investigate the nonlinear regime. The existence of the electron beam gives rise to four linear ion acoustic modes, which propagate at different phase speeds. The numerical analysis shows that the propagation speed of two of these modes may become complex-valued (i.e., waves cannot occur) under conditions which depend on values of the beam-to-background-electron density ratio , the ion-to-free-electron temperature ratio , and the electron beam velocity v0; the remaining two modes remain real in all cases. The basic set of fluid equations are reduced to a Schamel-type equation and a linear inhomogeneous equation for the first and second-order potential perturbations, respectively. Stationary solutions of the coupled equations are derived using a renormalization method. Higher-order nonlinearity is thus shown to modify the solitary wave amplitude and may also deform its shape, even possibly transforming a simple pulse into a W-type curve for one of the modes. The dependence of the excitation amplitude and of the higher-order nonlinearity potential correction on the parameters , , and v0 is numerically investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear properties of two-dimensional cylindrical quantum dust-ion-acoustic (QDIA) and quantum dust-acoustic (QDA) waves are studied in a collisionless, unmagnetized and dense (quantum) dusty plasma. For this purpose, the reductive perturbation technique is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining the cylindrical Kadomtsev–Petviashvili (CKP) equations. The effects of quantum diffraction, as well as quantum statistical and geometric effects on the profiles of QDIA and QDA solitary waves are examined. It is found that the amplitudes and widths of the nonplanar QDIA and QDA waves are significantly affected by the quantum electron tunneling effect. The addition of a dust component to a quantum plasma is seen to affect the propagation characteristics of localized QDIA excitations. In the case of low-frequency QDA waves, this effect is even stronger, since the actual form of the potential solitary waves, in fact, depends on the dust charge polarity (positive/negative) itself (allowing for positive/negative potential forms, respectively). The relevance of the present investigation to metallic nanostructures is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectroscopic measurements of NOAA AR 10871, obtained with the Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket instrument on 2006 April 12, reveal velocity oscillations in the He II 303.8 angstrom emission line formed at T approximate to 5; 10(4) K. The oscillations appear to arise in a bright active region loop arcade about 25 '' wide which crosses the EUNIS slit. The period of these transition region oscillations is 26 +/- 4 s, coupled with a velocity amplitude of +/- 10 km s(-1), detected over four complete cycles. Similar oscillations are observed in lines formed at temperatures up to T approximate to 4; 10(5) K, but we find no evidence for the coupling of these velocity oscillations with corresponding phenomena in the corona. We interpret the detected oscillations as originating from an almost purely adiabatic plasma, and infer that they are generated by the resonant transmission of MHD waves through the lower active region atmospheres. Through the use of seismological techniques, we establish that the observed velocity oscillations display wave properties most characteristic of fast body global sausage modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-cadence, synchronized, multiwavelength optical observations of a solar active region (NOAA 10794) are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system: the rapid dual imager. Wavelet analysis is undertaken to search for intensity related oscillatory signatures, and periodicities ranging from 20 to 370 s are found with significance levels exceeding 95%. Observations in the H-α blue wing show more penumbral oscillatory phenomena when compared to simultaneous G-band observations. The H-α oscillations are interpreted as the signatures of plasma motions with a mean velocity of 20 km s-1. The strong oscillatory power over H-α blue-wing and G-band penumbral bright grains is an indication of the Evershed flow with frequencies higher than previously reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Early Medieval period in Ireland (c. A.D. 400–1150) has been the subject of much archaeological and historical study. The recent application of various forms of archaeological sciences, as well as palaeoenvironmental studies, to the archaeological record have, however, added fresh impetus to this study area. It seems increasingly evident that significant changes to economy and society occurred during this period and were not recorded in detail in the contemporary documentary sources. This paper will attempt to outline those changes and to assess whether, or to what extent, they were influenced by climate change.