77 resultados para Structural health monitoring
Resumo:
In this paper the tracking system used to perform a scaled vehicle-barrier crash test is reported. The scaled crash test was performed as part of a wider project aimed at designing a new safety barrier making use of natural building materials. The scaled crash test was designed and performed as a proof of concept of the new mass-based safety barriers and the study was composed of two parts: the scaling technique and of a series of performed scaled crash tests. The scaling method was used for 1) setting the scaled test impact velocity so that energy dissipation and momentum transferring, from the car to the barrier, can be reproduced and 2) predicting the acceleration, velocity and displacement values occurring in the full-scale impact from the results obtained in a scaled test. To achieve this goal the vehicle and barrier displacements were to be recorded together with the vehicle accelerations and angular velocities. These quantities were measured during the tests using acceleration sensors and a tracking system. The tracking system was composed of a high speed camera and a set of targets to measure the vehicle linear and angular velocities. A code was developed to extract the target velocities from the videos and the velocities obtained were then compared with those obtained integrating the accelerations provided by the sensors to check the reliability of the method.
Resumo:
In recent years, there has been a move towards the development of indirect structural health monitoring (SHM)techniques for bridges; the low-cost vibration-based method presented in this paper is such an approach. It consists of the use of a moving vehicle fitted with accelerometers on its axles and incorporates wavelet analysis and statistical pattern recognition. The aim of the approach is to both detect and locate damage in bridges while reducing the need for direct instrumentation of the bridge. In theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach in detecting damage in a bridge from vehicle accelerations. For this purpose, the accelerations are processed using a continuous wavelet transform as when the axle passes over a damaged section, any discontinuity in the signal would affect the wavelet coefficients. Based on these coefficients, a damage indicator is formulated which can distinguish between different damage levels. However, it is found to be difficult to quantify damage of varying levels when the vehicle’s transverse position is varied between bridge crossings. In a real bridge field experiment, damage was applied artificially to a steel truss bridge to test the effectiveness of the indirect approach in practice; for this purpose a two-axle van was driven across the bridge at constant speed. Both bridge and vehicle acceleration measurements were recorded. The dynamic properties of the test vehicle were identified initially via free vibration tests. It was found that the resulting damage indicators for the bridge and vehicle showed similar patterns, however, it was difficult to distinguish between different artificial damage scenarios.
Resumo:
This paper addresses the problems of effective in situ measurement of the real-time strain for bridge weigh in motion in reinforced concrete bridge structures through the use of optical fiber sensor systems. By undertaking a series of tests, coupled with dynamic loading, the performance of fiber Bragg grating-based sensor systems with various amplification techniques were investigated. In recent years, structural health monitoring (SHM) systems have been developed to monitor bridge deterioration, to assess load levels and hence extend bridge life and safety. Conventional SHM systems, based on measuring strain, can be used to improve knowledge of the bridge's capacity to resist loads but generally give no information on the causes of any increase in stresses. Therefore, it is necessary to find accurate sensors capable of capturing peak strains under dynamic load and suitable methods for attaching these strain sensors to existing and new bridge structures. Additionally, it is important to ensure accurate strain transfer between concrete and steel, adhesives layer, and strain sensor. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors cannot capture accurate strains and/or peak strains.
Resumo:
This study presents a vibration-based health monitoring of short span bridges by
an inspection vehicle. How to screen health condition of short span bridges in terms of the
drive-by bridge inspection is described. Feasibility of the drive-by bridge inspection is
investigated through a scaled laboratory moving vehicle experiment. The feasibility of using an
instrumented vehicle to detect the natural frequency and changes in structural damping of a
model bridge is observed. Observations also demonstrate possibility of diagnosis of bridges by
comparing patterns of identified dynamic parameters of bridges through a periodical
monitoring. It is confirmed that the method for damage identification under a moving vehicle
identifies the damage location and severity well.
Resumo:
Many of the bridges currently in use worldwide are approaching the end of their design lives. However, rehabilitating and extending the lives of these structures raises important safety issues. There is also a need for increased monitoring which has considerable cost implications for bridge management systems. Existing structural health monitoring (SHM) techniques include vibration-based approaches which typically involve direct instrumentation of the bridge and are important as they can indicate the deterioration of the bridge condition. However, they can be labour intensive and expensive. In the past decade, alternative indirect vibration-based approaches which utilise the response of a vehicle passing over a bridge have been developed. This paper investigates such an approach; a low-cost approach for the monitoring of bridge structures which consists of the use of a vehicle fitted with accelerometers on its axles. The approach aims to detect damage in the bridge while obviating the need for direct instrumentation of the bridge. Here, the effectiveness of the approach in detecting damage in a bridge is investigated using a simplified vehicle-bridge interaction (VBI) model in theoretical simulations and a scaled VBI model in a laboratory experiment. In order to identify the existence and location of damage, the vehicle accelerations are recorded and processed using a continuous Morlet wavelet transform and a damage index is established. A parametric study is carried out to investigate the effect of parameters such as the bridge span length, vehicle speed, vehicle mass, damage level and road surface roughness on the accuracy of results.
Resumo:
Bridge Weigh in Motion (B-WIM) uses accurate sensing systems to transform an existing bridge into a mechanism to determine actual traffic loading. This information on traffic loading can enable efficient and economical management of transport networks and is becoming a valuable tool for bridge safety assessment. B-WIM can provide site specific traffic loading on deteriorating bridges, which can be used to determine if the reduced capacity is still sufficient to allow the structure to remain operational and minimise unnecessary replacement or rehabilitation costs and prevent disruption to traffic. There have been numerous reports on the accuracy classifications of existing B-WIM installations and some common issues have emerged. This paper details some of the recent developments in B-WIM which were aimed at overcoming these issues. A new system has been developed at Queens University Belfast using fibre optic sensors to provide accurate axle detection and improved accuracy overall. The results presented in this paper show that the fibre optic system provided much more accurate results than conventional WIM systems, as the FOS provide clearer signals at high scanning rates which require less filtering and less post processing. A major disadvantage of existing B-WIM systems is the inability to deal with more than one vehicle on the bridge at the same time; sensor strips have been proposed to overcome this issue. A bridge can be considered safe if the probability that load exceeds resistance is acceptably low, hence B-WIM information from advanced sensors can provide confidence in our ageing structures.
Resumo:
Bridge weigh-in-motion (B-WIM), a system that uses strain sensors to calculate the weights of trucks passing on bridges overhead, requires accurate axle location and speed information for effective performance. The success of a B-WIM system is dependent upon the accuracy of the axle detection method. It is widely recognised that any form of axle detector on the road surface is not ideal for B-WIM applications as it can cause disruption to the traffic (Ojio & Yamada 2002; Zhao et al. 2005; Chatterjee et al. 2006). Sensors under the bridge, that is Nothing-on-Road (NOR) B-WIM, can perform axle detection via data acquisition systems which can detect a peak in strain as the axle passes. The method is often successful, although not all bridges are suitable for NOR B-WIM due to limitations of the system. Significant research has been carried out to further develop the method and the NOR algorithms, but beam-and-slab bridges with deep beams still present a challenge. With these bridges, the slabs are used for axle detection, but peaks in the slab strains are sensitive to the transverse position of wheels on the beam. This next generation B-WIM research project extends the current B-WIM algorithm to the problem of axle detection and safety, thus overcoming the existing limitations in current state-of–the-art technology. Finite Element Analysis was used to determine the critical locations for axle detecting sensors and the findings were then tested in the field. In this paper, alternative strategies for axle detection were determined using Finite Element analysis and the findings were then tested in the field. The site selected for testing was in Loughbrickland, Northern Ireland, along the A1 corridor connecting the two cities of Belfast and Dublin. The structure is on a central route through the island of Ireland and has a high traffic volume which made it an optimum location for the study. Another huge benefit of the chosen location was its close proximity to a nearby self-operated weigh station. To determine the accuracy of the proposed B-WIM system and develop a knowledge base of the traffic load on the structure, a pavement WIM system was also installed on the northbound lane on the approach to the structure. The bridge structure selected for this B-WIM research comprised of 27 pre-cast prestressed concrete Y4-beams, and a cast in-situ concrete deck. The structure, a newly constructed integral bridge, spans 19 m and has an angle of skew of 22.7°.
Resumo:
Bridge scour is the number one cause of failure in bridges located over waterways. Scour leads to rapid losses in foundation stiffness and can cause sudden collapse. Previous research on bridge health monitoring has used changes in natural frequency to identify damage in bridge beams. The possibility of using a similar approach to identifying scour is investigated in this paper. To assess if this approach is feasible, it is necessary to establish how scour affects the natural frequency of a bridge, and if it is possible to measure changes in frequency using the bridge dynamic response to a passing vehicle. To address these questions, a novel vehicle–bridge–soil interaction (VBSI) model was developed. By carrying out a modal study in this model, it is shown that for a wide range of possible soil states, there is a clear reduction in the natural frequency of the first mode of the bridge with scour. Moreover, it is shown that the response signals on the bridge from vehicular loading are sufficient to allow these changes in frequency to be detected.
Resumo:
A field experiment was conducted on a real continuous steel Gerber-truss bridge with artificial damage applied. This article summarizes the results of the experiment for bridge damage detection utilizing traffic-induced vibrations. It investigates the sensitivities of a number of quantities to bridge damage including the identified modal parameters and their statistical patterns, Nair’s damage indicator and its statistical pattern and different sets of measurement points. The modal parameters are identified by autoregressive time-series models. The decision on bridge health condition is made and the sensitivity of variables is evaluated with the aid of the Mahalanobis–Taguchi system, a multivariate pattern recognition tool. Several observations are made as follows. For the modal parameters, although bridge damage detection can be achieved by performing Mahalanobis–Taguchi system on certain modal parameters of certain sets of measurement points, difficulties were faced in subjective selection of meaningful bridge modes and low sensitivity of the statistical pattern of the modal parameters to damage. For Nair’s damage indicator, bridge damage detection could be achieved by performing Mahalanobis–Taguchi system on Nair’s damage indicators of most sets of measurement points. As a damage indicator, Nair’s damage indicator was superior to the modal parameters. Three main advantages were observed: it does not require any subjective decision in calculating Nair’s damage indicator, thus potential human errors can be prevented and an automatic detection task can be achieved; its statistical pattern has high sensitivity to damage and, finally, it is flexible regarding the choice of sets of measurement points.
Resumo:
Much of the bridge stock on major transport links in North America and Europe was constructed in the 1950s and 1960s and has since deteriorated or is carrying loads far in excess of the original design loads. Structural Health Monitoring Systems (SHM) can provide valuable information on the bridge capacity but the application of such systems is currently limited by access and bridge type. This paper investigates the use of computer vision systems for SHM. A series of field tests have been carried out to test the accuracy of displacement measurements using contactless methods. A video image of each test was processed using a modified version of the optical flow tracking method to track displacement. These results have been validated with an established measurement method using linear variable differential transformers (LVDTs). The results obtained from the algorithm provided an accurate comparison with the validation measurements. The calculated displacements agree within 2% of the verified LVDT measurements, a number of post processing methods were then applied to attempt to reduce this error.
Resumo:
Much of the bridge stock on major transport links in North America and Europe was constructed in the 1950’s and 1960’s and has since deteriorated or is carrying loads far in excess of the original design loads. Structural Health Monitoring Systems (SHM) can provide valuable information on the bridge capacity but the application of such systems is currently limited by access and system cost. This paper investigates the development of a low cost portable SHM system using commercially available cameras and computer vision techniques. A series of laboratory tests have been carried out to test the accuracy of displacement measurements using contactless methods. The results from each of the tests have been validated with established measurement methods, such as linear variable differential transformers (LVDTs). A video image of each test was processed using two different digital image correlation programs. The results obtained from the digital image correlation methods provided an accurate comparison with the validation measurements. The calculated displacements agree within 4% of the verified measurements LVDT measurements in most cases confirming the suitability full camera based SHM systems
Resumo:
Ageing and deterioration of infrastructure is a challenge facing transport authorities. In
particular, there is a need for increased bridge monitoring in order to provide adequate
maintenance and to guarantee acceptable levels of transport safety. The Intelligent
Infrastructure group at Queens University Belfast (QUB) are working on a number of aspects
of infrastructure monitoring and this paper presents summarised results from three distinct
monitoring projects carried out by this group. Firstly the findings from a project on next
generation Bridge Weight in Motion (B-WIM) are reported, this includes full scale field testing
using fibre optic strain sensors. Secondly, results from early phase testing of a computer
vision system for bridge deflection monitoring are reported on. This research seeks to exploit
recent advances in image processing technology with a view to developing contactless
bridge monitoring approaches. Considering the logistical difficulty of installing sensors on a
‘live’ bridge, contactless monitoring has some inherent advantages over conventional
contact based sensing systems. Finally the last section of the paper presents some recent
findings on drive by bridge monitoring. In practice a drive-by monitoring system will likely
require GPS to allow the response of a given bridge to be identified; this study looks at the
feasibility of using low-cost GPS sensors for this purpose, via field trials. The three topics
outlined above cover a spectrum of SHM approaches namely, wired monitoring, contactless
monitoring and drive by monitoring
Resumo:
This paper is an overview of the development and application of Computer Vision for the Structural Health
Monitoring (SHM) of Bridges. A brief explanation of SHM is provided, followed by a breakdown of the stages of computer
vision techniques separated into laboratory and field trials. Qualitative evaluations and comparison of these methods have been
provided along with the proposal of guidelines for new vision-based SHM systems.
Resumo:
Aims: To determine whether routine outpatient monitoring of growth predicts adrenal suppression in prepubertal children treated with high dose inhaled glucocorticoid.
Methods: Observational study of 35 prepubertal children (aged 4–10 years) treated with at least 1000 µg/day of inhaled budesonide or equivalent potency glucocorticoid for at least six months. Main outcome measures were: changes in HtSDS over 6 and 12 month periods preceding adrenal function testing, and increment and peak cortisol after stimulation by low dose tetracosactrin test. Adrenal suppression was defined as a peak cortisol 500 nmol/l.
Results: The areas under the receiver operator characteristic curves for a decrease in HtSDS as a predictor of adrenal insufficiency 6 and 12 months prior to adrenal testing were 0.50 (SE 0.10) and 0.59 (SE 0.10). Prediction values of an HtSDS change of –0.5 for adrenal insufficiency at 12 months prior to testing were: sensitivity 13%, specificity 95%, and positive likelihood ratio of 2.4. Peak cortisol reached correlated poorly with change in HtSDS ( = 0.23, p = 0.19 at 6 months; = 0.33, p = 0.06 at 12 months).
Conclusions: Monitoring growth does not enable prediction of which children treated with high dose inhaled glucocorticoids are at risk of potentially serious adrenal suppression. Both growth and adrenal function should be monitored in patients on high dose inhaled glucocorticoids. Further research is required to determine the optimal frequency of monitoring adrenal function.
Resumo:
Understanding the fundaments of colony losses and improving the status of colony health will require cross-cutting research initiatives including honeybee pathology, chemistry, genetics and apicultural extension. The 7th framework of the European Union requested research to empirically and experimentally fill knowledge gaps on honeybee pests and diseases, including 'Colony Collapse Disorder' and the impact of parasites, pathogens and pesticides on honeybee mortality. The interactions among these drivers of colony loss will be studied in different European regions, using experimental model systems including selected parasites (e. g. Nosema and Varroa mites), viruses (Deformed Wing Virus, Black Queen Cell Virus, Israeli Acute Paralysis Virus) and model pesticides (thiacloprid, tau-fluvalinate). Transcriptome analyses will be used to explore host-pathogen-pesticide interactions and identify novel genes for disease resistance. Special attention will be given to sublethal and chronic exposure to pesticides and will screen how apicultural practices affect colony health. Novel diagnostic screening methods and sustainable concepts for disease prevention will be developed resulting in new treatments and selection tools for resistant stock. Research initiatives will be linked to various national and international ongoing European, North-and South-American colony health monitoring and research programs, to ensure a global transfer of results to apicultural practice in the world community of beekeepers.