63 resultados para Stochastic Integral
Resumo:
A Monte-Carlo simulation-based model has been constructed to assess a public health scheme involving mobile-volunteer cardiac First-Responders. The scheme being assessed aims to improve survival of Sudden-Cardiac-Arrest (SCA) patients, through reducing the time until administration of life-saving defibrillation treatment, with volunteers being paged to respond to possible SCA incidents alongside the Emergency Medical Services. The need for a model, for example, to assess the impact of the scheme in different geographical regions, was apparent upon collection of observational trial data (given it exhibited stochastic and spatial complexities). The simulation-based model developed has been validated and then used to assess the scheme's benefits in an alternative rural region (not a part of the original trial). These illustrative results conclude that the scheme may not be the most efficient use of National Health Service resources in this geographical region, thus demonstrating the importance and usefulness of simulation modelling in aiding decision making.
Resumo:
We extend the Sznajd Model for opinion formation by introducing persuasion probabilities for opinions. Moreover, we couple the system to an environment which mimics the application of the opinion. This results in a feedback, representing single-state opinion transitions in opposite to the two-state opinion transitions for persuading other people. We call this model opinion formation in an open community (OFOC). It can be seen as "stochastic extension of the Sznajd model for an open community, because it allows for "special choice of parameters to recover the original Sznajd model. We demonstrate the effect of feedback in the OFOC model by applying it to a scenario in which, e.g., opinion B is worse then opinion A but easier explained to other people. Casually formulated we analyzed the question, how much better one has to be, in order to persuade other people, provided the opinion is worse. Our results reveal a linear relation between the transition probability for opinion B and the influence of the environment on B.
Resumo:
The authors consider a point percolation lattice representation of a large-scale wireless relay sensor network (WRSN) deployed in a cluttered environment. Each relay sensor corresponds to a grid point in the random lattice and the signal sent by the source is modelled as an ensemble of photons that spread in the space, which may 'hit' other sensors and are 'scattered' around. At each hit, the relay node forwards the received signal to its nearest neighbour through direction-selective relaying. The authors first derive the distribution that a relay path reaches a prescribed location after undergoing certain number of hops. Subsequently, a closed-form expression of the average received signal strength (RSS) at the destination can be computed as the summation of all signal echoes' energy. Finally, the effect of the anomalous diffusion exponent ß on the mean RSS in a WRSN is studied, for which it is found that the RSS scaling exponent e is given by (3ß-1)/ß. The results would provide useful insight into the design and deployment of large-scale WRSNs in future. © 2011 The Institution of Engineering and Technology.
Resumo:
Throughout design development of satellite structure, stress engineer is usually challenged with randomness in applied loads and material properties. To overcome such problem, a risk-based design is applied which estimates satellite structure probability of failure under static and thermal loads. Determining probability of failure can help to update initially applied factors of safety that were used during structure preliminary design phase. These factors of safety are related to the satellite mission objective. Sensitivity-based analysis is to be implemented in the context of finite element analysis (probabilistic finite element method or stochastic finite element method (SFEM)) to determine the probability of failure for satellite structure or one of its components.
Resumo:
Shape memory alloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics, and so on. Although the number of applications is increasing, there has been limited success in precise motion control owing to the hysteresis effect of these smart actuators. The present paper proposes an optimization of the proportional-integral-derivative (PID) control method for SMA actuators by using genetic algorithm and the Preisach hysteresis model.
Stochastic Analysis of Seepage under Hydraulic Structures Resting on Anisotropic Heterogeneous Soils
Resumo:
In this paper, a new approach for extracting stress intensity factors (SIFs) by the extended element-free Galerkin method, through a crack closure integral (CCI) scheme, is proposed. The CCI calculation is used in conjunction with a local smoothing technique to improve the accuracy of the computed SIFs in a number of case studies of linear elastic fracture mechanics. The cases involve problems of mixed-mode, curved crack and thermo-mechanical loading. The SIFs by CCI, displacement and stress methods are compared with those based on the M-integral technique reported in the literature. The proposed CCI method involves very simple relations, and still gives good accuracy. The convergence of the results is also examined.
Resumo:
1. Ecologists are debating the relative role of deterministic and stochastic determinants of community structure. Although the high diversity and strong spatial structure of soil animal assemblages could provide ecologists with an ideal ecological scenario, surprisingly little information is available on these assemblages.
2. We studied species-rich soil oribatid mite assemblages from a Mediterranean beech forest and a grassland. We applied multivariate regression approaches and analysed spatial autocorrelation at multiple spatial scales using Moran's eigenvectors. Results were used to partition community variance in terms of the amount of variation uniquely accounted for by environmental correlates (e.g. organic matter) and geographical position. Estimated neutral diversity and immigration parameters were also applied to a soil animal group for the first time to simulate patterns of community dissimilarity expected under neutrality, thereby testing neutral predictions.
3. After accounting for spatial autocorrelation, the correlation between community structure and key environmental parameters disappeared: about 40% of community variation consisted of spatial patterns independent of measured environmental variables such as organic matter. Environmentally independent spatial patterns encompassed the entire range of scales accounted for by the sampling design (from tens of cm to 100 m). This spatial variation could be due to either unmeasured but spatially structured variables or stochastic drift mediated by dispersal. Observed levels of community dissimilarity were significantly different from those predicted by neutral models.
4. Oribatid mite assemblages are dominated by processes involving both deterministic and stochastic components and operating at multiple scales. Spatial patterns independent of the measured environmental variables are a prominent feature of the targeted assemblages, but patterns of community dissimilarity do not match neutral predictions. This suggests that either niche-mediated competition or environmental filtering or both are contributing to the core structure of the community. This study indicates new lines of investigation for understanding the mechanisms that determine the signature of the deterministic component of animal community assembly.