77 resultados para Stars: magnetic field


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pair of curved shocks in a collisionless plasma is examined with a two-dimensional particle-in-cell simulation. The shocks are created by the collision of two electron-ion clouds at a speed that exceeds everywhere the threshold speed for shock formation. A variation of the collision speed along the initially planar collision boundary, which is comparable to the ion acoustic speed, yields a curvature of the shock that increases with time. The spatially varying Mach number of the shocks results in a variation of the downstream density in the direction along the shock boundary. This variation is eventually equilibrated by the thermal diffusion of ions. The pair of shocks is stable for tens of inverse ion plasma frequencies. The angle between the mean flow velocity vector of the inflowing upstream plasma and the shock's electrostatic field increases steadily during this time. The disalignment of both vectors gives rise to a rotational electron flow, which yields the growth of magnetic field patches that are coherent over tens of electron skin depths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the general framework in which fits our investigation is that of modeling the dynamics of dust grains therein dusty plasma (complex plasma) in the presence of electromagnetic fields. The generalized discrete complex Ginzburg-Landau equation (DCGLE) is thus obtained to model discrete dynamical structure in dusty plasma with Epstein friction. In the collisionless limit, the equation reduces to the modified discrete nonlinear Schrödinger equation (MDNLSE). The modulational instability phenomenon is studied and we present the criterion of instability in both cases and it is shown that high values of damping extend the instability region. Equations thus obtained highlight the presence of soliton-like excitation in dusty plasma. We studied the generation of soliton in a dusty plasma taking in account the effects of interaction between dust grains and theirs neighbours. Numerical simulations are carried out to show the validity of analytical approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a long-term study of the secondary star in the cataclysmic variable AE Aqr, using Roche tomography to indirectly image starspots on the stellar surface spanning 8 years of observations. The seven maps show an abundance of spot features at both high and low latitudes. We find that all maps have at least one large high-latitude spot region, and we discuss its complex evolution between maps, as well as its compatibility with current dynamo theories. Furthermore, we see the apparent growth in fractional spot coverage, fs, around 45° latitude over the duration of observations, with a persistently high fs near latitudes of 20°. These bands of spots may form as part of a magnetic activity cycle, with magnetic flux tubes emerging at different latitudes, similar to the `butterfly' diagram for the Sun. We discuss the nature of flux tube emergence in close binaries, as well as the activity of AE Aqr in the context of other stars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. Projected rotational velocities (ve sin i) have been estimated for 334 targets in the VLT-FLAMES Tarantula Survey that do not manifest significant radial velocity variations and are not supergiants. They have spectral types from approximately O9.5 to B3. The estimates have been analysed to infer the underlying rotational velocity distribution, which is critical for understanding the evolution of massive stars. Methods. Projected rotational velocities were deduced from the Fourier transforms of spectral lines, with upper limits also being obtained from profile fitting. For the narrower lined stars, metal and non-diffuse helium lines were adopted, and for the broader lined stars, both non-diffuse and diffuse helium lines; the estimates obtained using the different sets of lines are in good agreement. The uncertainty in the mean estimates is typically 4% for most targets. The iterative deconvolution procedure of Lucy has been used to deduce the probability density distribution of the rotational velocities. Results. Projected rotational velocities range up to approximately 450 kms-1 and show a bi-modal structure. This is also present in the inferred rotational velocity distribution with 25% of the sample having 0 <ve <100 km s-1 and the high velocity component having ve ∼ 250 km s-1. There is no evidence from the spatial and radial velocity distributions of the two components that they represent either field and cluster populations or different episodes of star formation. Be-type stars have also been identified. Conclusions. The bi-modal rotational velocity distribution in our sample resembles that found for late-B and early-A type stars.While magnetic braking appears to be a possible mechanism for producing the low-velocity component, we can not rule out alternative explanations. © ESO 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few micron and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of
relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to explore the suitability of chromospheric images for magnetic modeling of active regions. We use high-resolutionimages (≈0.2"-0.3"), from the Interferometric Bidimensional Spectrometer in the Ca II 8542 Å line, the Rapid Oscillations in the Solar Atmosphere instrument in the Hα 6563Å line, the Interface Region Imaging Spectrograph in the 2796Å line, and compare non-potential magnetic field models obtainedfrom those chromospheric images with those obtained from images of the Atmospheric Imaging Assembly in coronal (171 Å, etc.) and inchromospheric (304 Å) wavelengths. Curvi-linear structures are automatically traced in those images with the OCCULT-2 code, to which we forward-fitted magnetic field lines computed with the Vertical-current Approximation Nonlinear Force Free Field code. We find that the chromospheric images: (1) reveal crisp curvi-linear structures (fibrils, loop segments, spicules) that are extremely well-suited for constraining magnetic modeling; (2) that these curvi-linear structures arefield-aligned with the best-fit solution by a median misalignment angle of μ2 ≈ 4°–7° (3) the free energy computed from coronal data may underestimate that obtained from chromospheric data by a factor of ≈2–4, (4) the height range of chromospheric features is confined to h≲4000 km, while coronal features are detected up to h = 35,000 km; and (5) the plasma-β parameter is β ≈ 10^-5 - 10^-1 for all traced features. We conclude that chromospheric images reveal important magnetic structures that are complementary to coronal images and need to be included in comprehensive magnetic field models, something that is currently not accomodated in standard NLFFF codes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present Roche tomograms of the K4V secondary star in the cataclysmic variable AE Aqr, reconstructed from two data sets taken 9 d apart, and measure the differential rotation of the stellar surface. The tomograms show many large, cool starspots, including a large high-latitude spot and a prominent appendage down the trailing hemisphere. We find two distinct bands of spots around 22° and 43° latitude, and estimate a spot coverage of 15.4-17 per cent on the Northern hemisphere. Assuming a solar-like differential rotation law, the differential rotation of AE Aqr was measured using two different techniques. The first method yields an equator-pole lap time of 269 d and the second yields a lap time of 262 d. This shows that the star is not fully tidally locked, as was previously assumed for CVs, but has a co-rotation latitude of ˜40°. We discuss the implications that these observations have on stellar dynamo theory, as well as the impact that spot traversal across the L1 point may have on accretion rates in CVs as well as some of their other observed properties. The entropy landscape technique was applied to determine the system parameters of AE Aqr. For the two independent data sets, we find M1 = 1.20 and 1.17 M⊙, M2 = 0.81 and 0.78 M⊙, and orbital inclinations of 50° to 51° at optimal systemic velocities of γ = -64.7 and -62.9 km s-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: We report simultaneous observations of the nearby flare star Proxima Centauri with VLT/UVES and XMM-Newton over three nights in March 2009. Our optical and X-ray observations cover the star's quiescent state, as well as its flaring activity and allow us to probe the stellar atmospheric conditions from the photosphere into the chromosphere, and then the corona during its different activity stages. Methods: Using the X-ray data, we investigate variations in coronal densities and abundances and infer loop properties for an intermediate-sized flare. The optical data are used to investigate the magnetic field and its possible variability, to construct an emission line list for the chromosphere, and use certain emission lines to construct physical models of Proxima Centauri's chromosphere. Results: We report the discovery of a weak optical forbidden Fe xiii line at 3388 Å during the more active states of Proxima Centauri. For the intermediate flare, we find two secondary flare events that may originate in neighbouring loops, and discuss the line asymmetries observed during this flare in H i, He i, and Ca ii lines. The high time-resolution in the Hα line highlights strong temporal variations in the observed line asymmetries, which re-appear during a secondary flare event. We also present theoretical modelling with the stellar atmosphere code PHOENIX to construct flaring chromospheric models. Based on observations collected at the European Southern Observatory, Paranal, Chile, 082.D-0953A and on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member states and NASA.Full Table 6 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A133

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonperturbative nonlinear statistical approach is presented to describe turbulent magnetic systems embedded in a uniform mean magnetic field. A general formula in the form of an ordinary differential equation for magnetic field-line wandering (random walk) is derived. By considering the solution of this equation for different limits several new results are obtained. As an example, it is demonstrated that the stochastic wandering of magnetic field-lines in a two-component turbulence model leads to superdiffusive transport, contrary to an existing diffusive picture. The validity of quasilinear theory for field-line wandering is discussed, with respect to different turbulence geometry models, and previous diffusive results are shown to be deduced in appropriate limits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two counterpropagating cool and equally dense electron beams are modeled with particle-in-cell simulations. The electron beam filamentation instability is examined in one spatial dimension, which is an approximation for a quasiplanar filament boundary. It is confirmed that the force on the electrons imposed by the electrostatic field, which develops during the nonlinear stage of the instability, oscillates around a mean value that equals the magnetic pressure gradient force. The forces acting on the electrons due to the electrostatic and the magnetic field have a similar strength. The electrostatic field reduces the confining force close to the stable equilibrium of each filament and increases it farther away, limiting the peak density. The confining time-averaged total potential permits an overlap of current filaments with an opposite flow direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence suggests that bats can detect the geomagnetic field, but the way in which this is used by them for navigation to a home roost remains unresolved. The geomagnetic field may be used by animals both to indicate direction and to locate position. In birds, directional information appears to be derived from an interaction of the magnetic field with either the sun or the stars, with some evidence suggesting that sunset/sunrise provides the primary directional reference by which a magnetic compass is calibrated daily. We demonstrate that homing greater mouse-eared bats (Myotis myotis) calibrate a magnetic compass with sunset cues by testing their homing response after exposure to an altered magnetic field at and after sunset. Magnetic manipulation at sunset resulted in a counterclockwise shift in orientation compared with controls, consistent with sunset calibration of the magnetic field, whereas magnetic manipulation after sunset resulted in no change in orientation. Unlike in birds, however, the pattern of polarization was not necessary for the calibration. For animals that occupy ecological niches where the sunset is rarely observed, this is a surprising finding. Yet it may indicate the primacy of the sun as an absolute geographical reference not only for birds but also within other vertebrate taxa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organization(1,2) occurs in plasmas when energy progressively transfers from smaller to larger scales in an inverse cascade(3). Global structures that emerge from turbulent plasmas can be found in the laboratory(4) and in astrophysical settings; for example, the cosmic magnetic field(5,6,) collisionless shocks in supernova remnants(7) and the internal structures of newly formed stars known as Herbig-Haro objects(8). Here we show that large, stable electromagnetic field structures can also arise within counter-streaming supersonic plasmas in the laboratory. These surprising structures, formed by a yet unexplained mechanism, are predominantly oriented transverse to the primary flow direction, extend for much larger distances than the intrinsic plasma spatial scales and persist for much longer than the plasma kinetic timescales. Our results challenge existing models of counter-streaming plasmas and can be used to better understand large-scale and long-time plasma self-organization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

τ Bootis is a late F-type main sequence star orbited by a Hot Jupiter. During the last years spectropolarimetric observations led to the hypothesis that this star may host a global magnetic field that switches its polarity once per year, indicating a very short activity cycle of only one year duration. In our ongoing observational campaign, we have collected several X-ray observations with XMM-Newton and optical spectra with TRES/FLWO in Arizona to characterize τ Boo's corona and chromosphere over the course of the supposed one-year cycle. Contrary to the spectropolarimetric reconstructions, our observations do not show indications for a short activity cycle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High time resolution observations of a white-light flare on the active star EQ PegB show evidence of intensity variations with a period of ≈10 s. The period drifts to longer values during the decay phase of the flare. If the oscillation is interpreted as an impulsively-excited, standing-acoustic wave in a flare loop, the period implies a loop length of ≈3.4 Mm and ≈6.8 Mm for the case of the fundamental mode and the second harmonic, respectively. However, the small loop lengths imply a very high modulation depth making the acoustic interpretation unlikely. A more realistic interpretation may be that of a fast-MHD wave, with the modulation of the emission being due to the magnetic field. Alternatively, the variations could be due to a series of reconnection events. The periodic signature may then arise as a result of the lateral separation of individual flare loops or current sheets with oscillatory dynamics (i.e., periodic reconnection).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An effective frozen core approximation has been developed and applied to the calculation of energy levels and ionization energies of the beryllium atom in magnetic field strengths up to 2.35 x 10(5) T. Systematic improvement over the existing results for the beryllium ground and low-lying states has been accomplished by taking into account most of the correlation effects in the four-electron system. To our knowledge, this is the first calculation of the electronic properties of the beryllium atom in a strong magnetic field carried out using a configuration interaction approximation and thus allowing a treatment beyond that of Hartree-Fock. Differing roles played by strong magnetic fields in intrashell correlation within different states are observed. In addition, possible ways to gain further improvement in the energies of the states of interest are proposed and discussed briefly.