86 resultados para Sperm morphometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Sperm DNA damage shows great promise as a biomarker of infertility. The study aim is to determine the usefulness of DNA fragmentation (DF), including modified bases (MB), to predict assisted reproduction treatment (ART) outcomes. Methods: DF in 360 couples (230 IVF and 130 ICSI) was measured by the alkaline Comet assay in semen and in sperm following density gradient centrifugation (DGC) and compared with fertilization rate (FR), embryo cumulative scores (ECS1) for the total number of embryos/treatment, embryos transferred (ECS2), clinical pregnancy (CP) and spontaneous pregnancy loss. MB were also measured using formamidopyrimidine DNA glycosylase to convert them into strand breaks. Results: In IVF, FR and ECS decreased as DF increased in both semen and DGC sperm, and couples who failed to achieve a CP had higher DF than successful couples (+12.2 semen, P = 0.004; +9.9 DGC sperm, P = 0.010). When MB were added to existing strand breaks, total DF was markedly higher (+17.1 semen, P = 0.009 and +13.8 DGC sperm, P = 0.045). DF was not associated with FR, ECS or CP in either semen or DGC sperm following ISCI. In contrast, by including MB, there was significantly more DNA damage (+16.8 semen, P = 0.008 and +15.5 DGC sperm, P = 0.024) in the group who did not achieve CP. Conclusion: SDF can predict ART outcome for IVF. Converting MB into further DNA strand breaks increased the test sensitivity, giving negative correlations between DF and CP for ICSI as well as IVF. © 2010 The Author.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoflavones are plant compounds, proposed to have health benefits in a variety of human diseases, including coronary heart disease and endocrine-responsive cancers. Their physiological effects include possible antioxidant activity, therefore suggesting a role for isoflavones in the prevention of male infertility. The aim of this study was to test the antioxidant effects of the isoflavones genistein and equol on sperm DNA integrity, assessed in vitro after hydrogen peroxide-mediated damage, using the cornet assay. Pre-treatment with genistein or equol at doses of 0.01-100 mumol/l significantly protected sperm DNA against oxidative damage. Both ascorbic acid (10-600 mumol/l) and alpha-tocopherol (1-100 mumol/l) also protected. Compared with ascorbic acid and alpha-tocopherol, added at physiological concentrations, genistein was the most potent antioxidant, followed by equol, ascorbic acid, and alpha-tocopherol. Genistein and equol added in combination were more protective than when added singly. Based on these preliminary data, which are similar to those observed previously in lymphocytes, these compounds may have a role to play in antioxidant protection against male infertility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate sperm DNA fragmentation and semen parameters to diagnose male factor infertility and predict pregnancy after IVF.
Design: Prospective study.
Setting: Academic research laboratory.
Patient(s): Seventy-five couples undergoing IVF and 28 fertile donors.
Intervention(s): Sperm DNA fragmentation was measured by the alkaline Comet assay in semen and sperm after density gradient centrifugation (DGC). Binary logistic regression was used to analyze odds ratios (OR) and relative risks (RR) for IVF outcomes.
Main Outcome Measure(s): Semen parameters and sperm DNA fragmentation in semen and DGC sperm compared with fertilization rates, embryo quality, and pregnancy.
Result(s): Men with sperm DNA fragmentation at more than a diagnostic threshold of 25% had a high risk of infertility (OR: 117.33, 95% confidence interval [CI]: 12.72–2,731.84, RR: 8.75). Fertilization rates and embryo quality decreased as sperm DNA fragmentation increased in semen and DGC sperm. The risk of failure to achieve a pregnancy increased when sperm DNA fragmentation exceeded a prognostic threshold value of 52% for semen (OR: 76.00, CI: 8.69–1,714.44, RR: 4.75) and 42% for DGC sperm (OR: 24.18, CI: 2.89–522.34, RR: 2.16).
Conclusion(s): Sperm DNA testing by the alkaline Comet assay is useful for both diagnosis of male factor infertility and prediction of IVF outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exchange of histones with protamines in sperm DNA results in sperm chromatin compaction and protection. Variations in sperm protamine expression are associated with male infertility. The aim of this study was to investigate relationships between DNA fragmentation, sperm protamines and assisted reproduction treatment. Semen and spermatozoa prepared by density-gradient centrifugation (DGC) from 73 men undergoing IVF and 24 men undergoing intracytoplasmic sperm injection (ICSI) were included in the study. Nuclear DNA fragmentation was assessed using the alkaline Comet assay and protamines were separated by acid-urea polyacrylamide gels. Sperm DNA fragmentation and protamine content (P1-DNA, P2-DNA, P1 + P2-DNA) decreased in spermatozoa after DGC. Abnormally high and low P1/P2 ratios were associated with increased sperm DNA fragmentation. Couples with idiopathic infertility had abnormally high P1/P2 ratios. Fertilization rates and embryo quality decreased as sperm DNA fragmentation or protamines increased. Sperm DNA fragmentation was lower in couples achieving pregnancies after IVF, but not after ICSI. There was no correlation between protamine content (P1-DNA, P2-DNA, P1 + P2-DNA) or P1/P2 ratios and IVF or ICSI pregnancies. Increased sperm DNA fragmentation was associated with abnormal protamination and resulted in lower fertilization rates, poorer embryo quality and reduced pregnancy rates. During late spermatogenesis, around 85% of the histones in the sperm nucleus are replaced with protamines. This process results in sperm chromatin compaction and also transcription silencing. In the human, protamines are comprised of two types: protamine-1 (P1) and protamine-2 (P2). Variations in sperm protamine expression are associated with male infertility. Similarly, sperm DNA integrity is important for male fertility. The aim of this study was to investigate relationships between DNA fragmentation, sperm protamines and assisted reproduction treatment. Semen and spermatozoa prepared by density-gradient centrifugation (DGC) from 73 men undergoing IVF and 24 men undergoing intracytoplasmic sperm injection (ICSI) were included in the study. Nuclear DNA fragmentation was assessed using the alkaline Comet assay and protamines were separated by acid-urea polyacrylamide gels. Sperm DNA fragmentation and protamine content decreased in spermatozoa after DGC. Abnormally high and low P1/P2 ratios were associated with increased sperm DNA fragmentation. Couples with idiopathic infertility had abnormally high P1/P2 ratios. Fertilization rates and embryo quality decreased as sperm DNA fragmentation or protamines increased. Sperm DNA fragmentation was lower in couples achieving pregnancies after IVF, but not after ICSI. There was no correlation between protamine content or P1/P2 ratios and IVF or ICSI pregnancies. Increased sperm DNA fragmentation was associated with abnormal protamination and resulted in lower fertilization rates, poorer embryo quality and reduced pregnancy rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schizophrenia (SCZ) and bipolar disorder (BP) are associated with neuropathological brain changes, which are believed to disrupt connectivity between brain processes and may have common properties. Patients at first psychotic episode are unique, as one can assess brain alterations at illness inception, when many confounders are reduced or absent. SCZ (N=25) and BP (N=24) patients were recruited in a regional first episode psychosis MRI study. VBM methods were used to study gray matter (GM) and white matter (WM) differences between patient groups and case by case matched controls. For both groups, deficits identified are more discrete than those typically reported in later stages of illness. SCZ patients showed some evidence of GM loss in cortical areas but most notable were in limbic structures such as hippocampus, thalamus and striatum and cerebellum. Consistent with disturbed neural connectivity WM alterations were also observed in limbic structures, the corpus callosum and many subgyral and sublobar regions in the parietal, temporal and frontal lobes. BP patients displayed less evidence of volume changes overall, compared to normal healthy participants, but those changes observed were primarily in WM areas which overlapped with regions identified in SCZ, including thalamus and cerebellum and subgyral and sublobar sites. At first episode of psychosis there is evidence of a neuroanatomical overlap between SCZ and BP with respect to brain structural changes, consistent with disturbed neural connectivity. There are also important differences however in that SCZ displays more extensive structural alteration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY QUESTION Is there an association between high levels of sperm DNA damage and miscarriage?SUMMARY ANSWERMiscarriage rates are positively correlated with sperm DNA damage levels.WHAT IS KNOWN ALREADYMost ejaculates contain a subpopulation of sperm with DNA damage, also referred to as DNA fragmentation, in the form of double or single-strand breaks which have been induced in the DNA prior to or following ejaculation. This DNA damage may be particularly elevated in some subfertile men, hence several studies have examined the link between sperm DNA damage levels and conception and miscarriage rates.STUDY DESIGN, SIZE, DURATIONA systematic review and meta-analysis of studies which examined the effect of sperm DNA damage on miscarriage rates was performed. Searches were conducted on MEDLINE, EMBASE and the Cochrane Library without any language restrictions from database inception to January 2012.PARTICIPANTS/MATERIALS, SETTING, METHODSWe used the terms 'DNA damage' or 'DNA fragmentation' combined with 'miscarriage', 'abortion' or 'pregnancy' to generate a set of relevant citations. Data extraction was performed by two reviewers. Study quality was assessed using the Newcastle-Ottawa Scale. Meta-analysis of relative risks of miscarriage was performed with a random effects model. Subgroup analyses were performed by the type of DNA damage test, whether the sperm examined were prepared or from raw semen and for pregnancies resulting from IVF or ICSI treatment.MAIN RESULTS AND THE ROLE OF CHANCEWe identified 16 cohort studies (2969 couples), 14 of which were prospective. Eight studies used acridine orange-based assays, six the TUNEL assay and two the COMET assay. Meta-analysis showed a significant increase in miscarriage in patients with high DNA damage compared with those with low DNA damage [risk ratio (RR) = 2.16 (1.54, 3.03), P <0.00001)]. A subgroup analysis showed that the miscarriage association is strongest for the TUNEL assay (RR = 3.94 (2.45, 6.32), P <0.00001).LIMITATIONS, REASONS FOR CAUTIONThere is some variation in study characteristics, including the use of different assays and different thresholds for DNA damage and the definition of pregnancy loss.WIDER IMPLICATIONS OF THE FINDINGSThe use of methods which select sperm without DNA damage for use in assisted conception treatment may reduce the risk of miscarriage. This finding indicates that assays detecting DNA damage could be considered in those suffering from recurrent pregnancy loss. Further research is necessary to study the mechanisms of DNA damage and the potential therapeutic effects of antioxidant therapy.STUDY FUNDING/COMPETING INTEREST(S)None.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The endocannabinoid system (ECS), mainly through the action of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) at cannabinoid (CB(1), CB(2)) and vanilloid (TRPV1) receptors, plays a crucial role in controlling functionality of sperm, with a clear impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through LC-ESI-MS), mRNA (through quantitative RT-PCR), protein (through Western Blotting and ELISA) expression, and functionality (through activity and binding assays) of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and FAAH, for AEA; DAGL and MAGL for 2-AG), as well as of their binding receptors CB(1), CB(2) and TRPV1. Our findings show a marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm but was undetectable in infertile sperm, whereas that of CB(1) and CB(2) receptors was not statistically different in the two groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of ECS-oriented drugs to treat male fertility problems. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sperm DNA damage has a negative impact on pregnancy rates following assisted reproduction treatment (ART). The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage. Following IVF, couples with <25% sperm DNA fragmentation had a live-birth rate of 33%; in contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13%. Following ICSI, no significant differences in sperm DNA damage were found between any groups of patients. Sperm DNA damage was also associated with low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men with idiopathic infertility have high sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF.

Sperm DNA damage has a negative impact on assisted reproduction treatment outcome, in particular, on pregnancy rates. The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage and treatment outcome. Following IVF, couples with <25% sperm DNA fragmentation had a live birth rate of 33%. In contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13% following IVF. Following ICSI, there were no significant differences in levels of sperm DNA damage between any groups of patients. Sperm DNA damage was also associated with the very low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men have high level of sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this debate article, I am going to set out the case that sperm DNA fragmentation testing is essential in current day fertility management because-
• Our current semen analysis testing is unfit for purpose
Sperm DNA damage testing has strong associations with every fertility check point
Sperm DNA damage testing has strong associations with miscarriage
Sperm DNA testing can explain ‘unexplained’ infertility
• There are reasons why sperm with poor DNA are successful in ICSI
• There are no non-invasive sperm function tests that provide the same information
• We need to take a fresh look at the ‘evidence’ against sperm DNA testing
• We have no reason to wait. There are benefits for clinics and couples alike.