38 resultados para Space Optical Interconnects
Resumo:
We present new optical and near-infrared (NIR) photometry and spectroscopy of the Type IIP supernova (SN), SN 2004et. In combination with already published data, this provides one of the most complete studies of optical and NIR data for any Type IIP SN from just after explosion to +500 d. The contribution of the NIR flux to the bolometric light curve is estimated to increase from 15 per cent at explosion to around 50 per cent at the end of the plateau and then declines to 40 per cent at 300 d. SN 2004et is one of the most luminous IIP SNe which has been well studied and characterized, and with a luminosity of log L = 42.3 erg s-1 and a 56Ni mass of 0.06 +/- 0.04 M-circle dot, it is two times brighter than SN 1999em. We provide parametrized bolometric corrections as a function of time since explosion for SN 2004et and three other IIP SNe that have extensive optical and NIR data. These can be used as templates for future events in optical and NIR surveys without full wavelength coverage. We compare the physical parameters of SN 2004et with those of other well-studied IIP SNe and find that the kinetic energies span a range of 1050-1051 erg. We compare the ejected masses calculated from hydrodynamic models with the progenitor masses and limits derived from pre-discovery images. Some of the ejected mass estimates are significantly higher than the progenitor mass estimates, with SN 2004et showing perhaps the most serious mass discrepancy. With the current models, it appears difficult to reconcile 100 d plateau lengths and high expansion velocities with the low ejected masses of 5-6 M-circle dot implied from 7-8 M-circle dot progenitors. The nebular phase is studied using very late-time Hubble Space Telescope photometry, along with optical and NIR spectroscopy. The light curve shows a clear flattening at 600 d in the optical and the NIR, which is likely due to the ejecta impacting on circumstellar material. We further show that the [O i] 6300, 6364 A line strengths in the nebular spectra of four Type IIP SNe imply ejected oxygen masses of 0.5-1.5 M-circle dot.
Resumo:
We present the results of the one-year long observational campaign of the type 11 plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool galaxy). This extensive data set makes SN 2005cs the best observed low-luminosity, Ni-56-poor type II plateau event so far and one of the best core-collapse supernovae ever. The optical and near-infrared spectra show narrow P-Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about 1000 km s(-1)) of the ejected material. The optical light curves cover both the plateau phase and the late-time radioactive tail, until about 380 d after core-collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 cl. In addition to optical observations, we also present near-infrared light curves that (together with already published ultraviolet observations) allow us to construct for the first time a reliable bolometric light Curve for an object of this class. Finally. comparing the observed data withthose derived front it semi-analytic model, we infer for SN 2005cs a Ni-56 mass of about 3 x 10(-3) M-circle dot a total ejected mass of 8-13 M-circle dot and an explosion energy of about 3 x 10(50) erg.
Resumo:
We present simultaneous and continuous observations of the Halpha, Hbeta, He I D-3, Na I D-1,D-2 doublet and the Ca II H&K lines for the RS CVn system HR 1099. The spectroscopic observations were obtained during the MUSICOS 1998 campaign involving several observatories and instruments, both echelle and long-slit spectrographs. During this campaign, HR 1099 was observed almost continuously for more than 8 orbits of 2.(d)8. Two large optical flares were observed, both showing an increase in the emission of Halpha, Ca II H K, Hbeta and He I D-3 and a strong filling-in of the Na I D-1, D-2 doublet. Contemporary photometric observations were carried out with the robotic telescopes APT-80 of Catania and Phoenix-25 of Fairborn Observatories. Maps of the distribution of the spotted regions on the photosphere of the binary components were derived using the Maximum Entropy and Tikhonov photometric regularization criteria. Rotational modulation was observed in Halpha and He I D-3 in anti-correlation with the photometric light curves. Both flares occurred at the same binary phase (0.85), suggesting that these events took place in the same active region. Simultaneous X-ray observations, performed by ASM on board RXTE, show several flare-like events, some of which correlate well with the observed optical flares. Rotational modulation in the X-ray light curve has been detected with minimum flux when the less active G5 V star was in front. A possible periodicity in the X-ray flare-like events was also found.
Resumo:
We present first-season infrared (IR) and optical photometry and spectroscopy of the Type Ia Supernova 1998bu in M96. We also report optical polarimetry of this event. SN 1998bu is one of the closest type Ia supernovae of modern times, and the distance of its host galaxy is well determined. We find that SN 1998bu is both photometrically and spectroscopically normal. However, the extinction to this event is unusually high, with A(V) = 1.0 +/- 0.11. We find that SN 1998bu peaked at an intrinsic M-V = -19.37 +/- 0.23. Adopting a distance modulus of 30.25 (Tanvir et al.) and using Phillips et al.'s relations for the Hubble constant, we obtain H-0 = 70.4 +/- 4.3 km s(-1) Mpc(-1). Combination of our IR photometry with those of Jha et al. provides one of the most complete early-phase IR light curves for a SN Ia published so far. In particular, SN 1998bu is the first normal SN Ia for which good pre-t(Bmax) IR coverage has been obtained. It reveals that the J, H and K light curves peak about 5 days earlier than the flux in the B-band curve.
Resumo:
We report on the results of optical follow-up observations of the counterpart of the gamma-ray burst GRB 970508, starting 7 hr after the event. Multicolor U-, B-, V-, R-c-, and I-c-band observations were obtained during the first three consecutive nights. The counterpart was monitored regularly in R-c, until similar to 4 months after the burst. The light curve after the maximum follows a decline that can be fitted with a power law with exponent alpha = -1.141 +/- 0.014. Deviations from a smooth power-law decay are moderate (rms = 0.15 mag). We find no flattening of the light curve at late times. The optical afterglow fluence is a significant fraction, similar to 5%, of the GRB fluence. The optical energy distribution can be well represented by a power law, the slope of which changed at the time of the maximum (the spectrum became redder).
Resumo:
With increasing demands on storage devices in the modern communication environment, the storage area network (SAN) has evolved to provide a direct connection allowing these storage devices to be accessed efficiently. To optimize the performance of a SAN, a three-stage hybrid electronic/optical switching node architecture based on the concept of a MPLS label switching mechanism, aimed at serving as a multi-protocol label switching (MPLS) ingress label edge router (LER) for a SAN-enabled application, has been designed. New shutter-based free-space multi-channel optical switching cores are employed as the core switch fabric to solve the packet contention and switching path conflict problems. The system-level node architecture design constraints are evaluated through self-similar traffic sourced from real gigabit Ethernet network traces and storage systems. The extension performance of a SAN over a proposed WDM ring network, aimed at serving as an MPLS-enabled transport network, is also presented and demonstrated.
Resumo:
A reduced-density-operator description is developed for coherent optical phenomena in many-electron atomic systems, utilizing a Liouville-space, multiple-mode Floquet–Fourier representation. The Liouville-space formulation provides a natural generalization of the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method, which has been developed for multi-photon transitions and laser-assisted electron–atom collision processes. In these applications, the R-matrix-Floquet method has been demonstrated to be capable of providing an accurate representation of the complex, multi-level structure of many-electron atomic systems in bound, continuum, and autoionizing states. The ordinary Hilbert-space (Hamiltonian) formulation of the R-matrix-Floquet method has been implemented in highly developed computer programs, which can provide a non-perturbative treatment of the interaction of a classical, multiple-mode electromagnetic field with a quantum system. This quantum system may correspond to a many-electron, bound atomic system and a single continuum electron. However, including pseudo-states in the expansion of the many-electron atomic wave function can provide a representation of multiple continuum electrons. The 'dressed' many-electron atomic states thereby obtained can be used in a realistic non-perturbative evaluation of the transition probabilities for an extensive class of atomic collision and radiation processes in the presence of intense electromagnetic fields. In order to incorporate environmental relaxation and decoherence phenomena, we propose to utilize the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method as a starting-point for a Liouville-space (reduced-density-operator) formulation. To illustrate how the Liouville-space R-matrix-Floquet formulation can be implemented for coherent atomic radiative processes, we discuss applications to electromagnetically induced transparency, as well as to related pump–probe optical phenomena, and also to the unified description of radiative and dielectronic recombination in electron–ion beam interactions and high-temperature plasmas.
Resumo:
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.