106 resultados para Single-cell


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exposure to ionizing radiation can increase the risk of cancer, which is often characterized by genomic instability. In environmental exposures to high-LET radiation (e.g. Ra-222), it is unlikely that many cells will be traversed or that any cell will be traversed by more than one alpha particle, resulting in an in vivo bystander situation, potentially involving inflammation. Here primary human lymphocytes were irradiated with precise numbers of He-3(2+) ions delivered to defined cell population fractions, to as low as a single cell being traversed, resembling in vivo conditions. Also, we assessed the contribution to genomic instability of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFA). Genomic instability was significantly elevated in irradiated groups ( greater than or equal totwofold over controls) and was comparable whether cells were traversed by one or two He-3(2+) ions. Interestingly, substantial heterogeneity in genomic instability between experiments was observed when only one cell was traversed. Genomic instability was significantly reduced (60%) in cultures in which all cells were irradiated in the presence of TNFA antibody, but not when fractions were irradiated under the same conditions, suggesting that TNFA may have a role in the initiation of genomic instability in irradiated cells but not bystander cells. These results have implications for low-dose exposure risks and cancer. (C) 2005 by Radiation Research Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interstitial cells of Cajal (ICC) isolated from the rabbit urethra exhibit regular Ca2+ oscillations that are associated with spontaneous transient inward currents (STICs) recorded under voltage clamp. Their frequency is known to be very sensitive to external Ca2+ concentration but the mechanism of this has yet to be elucidated. In the present study experiments were performed to assess the role of Na+-Ca2+ exchange (NCX) in this process. Membrane currents were recorded using the patch clamp technique and measurements of intracellular Ca2+ were made using fast confocal microscopy. When reverse mode NCX was enhanced by decreasing the external Na+ concentration [Na+]o from 130 to 13 mM, the frequency of global Ca2+ oscillations and STICs increased. Conversely, inhibition of reverse mode NCX by KB-R7943 and SEA0400 decreased the frequency of Ca2+ oscillations and STICs. Application of caffeine (10 mM) and noradrenaline (10 microM) induced transient Ca2+-activated chloride currents (I(ClCa)) at -60 mV due to release of Ca2+ from ryanodine- and inositol trisphosphate (IP3)-sensitive Ca2+ stores, respectively, but these responses were not blocked by KB-R7943 or SEA0400 suggesting that neither drug blocked Ca2+-activated chloride channels or Ca2+ release from stores. Intact strips of rabbit urethra smooth muscle develop spontaneous myogenic tone. This tone was relaxed by application of SEA0400 in a concentration-dependent fashion. Finally, single cell RT-PCR experiments revealed that isolated ICC from the rabbit urethra only express the type 3 isoform of the Na+-Ca2+ exchanger (NCX3). These results suggest that frequency of spontaneous activity in urethral ICC can be modulated by Ca2+ entry via reverse NCX.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Skin is a representative self-renewing tissue containing stem cells. Although many attempts have been made to define and isolate skin-derived stem cells, establishment of a simple and reliable isolation procedure remains a goal to be achieved. Here, we report the isolation of cells having stem cell properties from mouse embryonic skin using a simple selection method based on an assumption that stem cells may grow in an anchorage-independent manner. We inoculated single cell suspensions prepared from mouse embryonic dermis into a temperature-sensitive gel and propagated the resulting colonies in a monolayer culture. The cells named dermis-derived epithelial progenitor-1 (DEEP) showed epithelial morphology and grew rapidly to a more than 200 population doubling level over a period of 250 days. When the cells were kept confluent, they spontaneously formed spheroids and continuously grew even in spheroids. Immunostaining revealed that all of the clones were positive for the expression of cytokeratin-8, -18, -19, and E-cadherin and negative for the expression of cytokeratin-1, -5, -6, -14, -20, vimentin, nestin, a ckit. Furthermore, they expressed epithelial stem cell markers such as p63, integrin beta1, and S100A6. On exposure to TGFbeta in culture, some of DEEP-1 cells expressed alpha-smooth muscle actin. When the cells were transplanted into various organs of adult SCID mice, a part of the inoculated cell population acquired neural, hepatic, and renal cell properties. These results indicate that the cells we isolated were of epithelial stem cell origin and that our new approach is useful for isolation of multipotent stem cells from skin tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Signal initiation by engagement of the TCR triggers actin rearrangements, receptor clustering, and dynamic organization of signaling complexes to elicit and sustain downstream signaling. Nef, a pathogenicity factor of HIV, disrupts early TCR signaling in target T cells. To define the mechanism underlying this Nef-mediated signal disruption, we employed quantitative single-cell microscopy following surface-mediated TCR stimulation that allows for dynamic visualization of distinct signaling complexes as microclusters (MCs). Despite marked inhibition of actin remodeling and cell spreading, the induction of MCs containing TCR-CD3 or ZAP70 was not affected significantly by Nef. However, Nef potently inhibited the subsequent formation of MCs positive for the signaling adaptor Src homology-2 domain-containing leukocyte protein of 76 kDa (SLP-76) to reduce MC density in Nef-expressing and HIV-1-infected T cells. Further analyses suggested that Nef prevents formation of SLP-76 MCs at the level of the upstream adaptor protein, linker of activated T cells (LAT), that couples ZAP70 to SLP-76. Nef did not disrupt pre-existing MCs positive for LAT. However, the presence of the viral protein prevented de novo recruitment of active LAT into MCs due to retargeting of LAT to an intracellular compartment. These modulations in MC formation and composition depended on Nef's ability to simultaneously disrupt both actin remodeling and subcellular localization of TCR-proximal machinery. Nef thus employs a dual mechanism to disturb early TCR signaling by limiting the communication between LAT and SLP-76 and preventing the dynamic formation of SLP-76-signaling MCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A finite element model of a single cell was created and used to investigate the effects of ageing on biophysical stimuli generated within a cell. Major cellular components were incorporated in the model: the membrane, cytoplasm, nucleus, microtubules, actin filaments, intermediate filaments, nuclear lamina, and chromatin. The model used multiple sets of tensegrity structures. Viscoelastic properties were assigned to the continuum components. To corroborate the model, a simulation of Atomic Force Microscopy (AFM) indentation was performed and results showed a force/indentation simulation with the range of experimental results.

Ageing was simulated by both increasing membrane stiffness (thereby modelling membrane peroxidation with age) and decreasing density of cytoskeletal elements (thereby modelling reduced actin density with age). Comparing normal and aged cells under indentation predicts that aged cells have a lower membrane area subjected to high strain compared to young cells, but the difference, surprisingly, is very small and would not be measurable experimentally. Ageing is predicted to have more significant effect on strain deep in the nucleus. These results show that computation of biophysical stimuli within cells are achievable with single-cell computational models whose force/displacement behaviour is within experimentally observed ranges. the models suggest only small, though possibly physiologically-significant, differences in internal biophysical stimuli between normal and aged cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel tubular cathode for the direct methanol fuel cell (DMFC) is proposed, based on a tubular titanium mesh. A dip-coating method has been developed for its fabrication. The tubular cathode is composed of titanium mesh, a cathode diffusion layer, a catalyst layer, and a recast Nafion® film. The titanium mesh is present at the inner circumference of the diffusion layer, while the recast Nafion® film is at the outer circumference of the catalyst layer. A DMFC single cell with a 3.5 mgPt cm tubular cathode was able to perform as well, in terms of power density, as a conventional planar DMFC. A peak power density of 9 mW cm was reached under atmospheric air at 25 °C. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel anode structure based on Ti mesh for the direct methanol fuel cell (DMFC) has been prepared by thermal deposition of ~5 µm PtRuO2 catalyst layer on ~50 µm Ti mesh. The preparation procedures and the main characteristics of the anode were studied by half-cell testing, scanning electron microscopy analysis, energy-dispersive X-ray measurement, and single-cell testing. The optimum calcination temperature is 450°C, calcination time is 90- 120 min, PtRuO2 catalyst loading is 5.0 mg cm-2, Pt precursor concentration range of solution is 0.14- 0.4 M, and solution aging time is 1 day. The performances of the anodes prepared using the solution kept within 20 days showed no significant difference. When it was used in DMFC feed with low-concentration methanol solution at 90°C, this new anode shows better performance than that of the conventional anode, because its thin hydrophilic structure is a benefit to the transport of methanol and carbon dioxide. However, due to its opening structure, when higher concentration methanol was employed, the performance of the cell with new anode became worse. © 2006 The Electrochemical Society. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Aquivion short-side-chain (SSC) perfluorosulfonic acid (PFSA) ionomer was adopted in catalyst layers (CL) of polymer electrolyte membrane water electrolysers (PEMWE) instead of long-side-chain (LSC) Nafion ionomer. The effects of SSC ionomer content in CL for oxygen evolution reaction were studied in half cell with cyclic voltammetry and steady state linear sweep. In a single cell test the MEA with SSC-PFSA Aquivion ionomer exhibited better thermal stability than the one with LSC-PFSA Nafion ionomer at 90 °C. The cell voltage at a current density of 1 A cm was 1.63 V at 90 °C using the SSC-PFSA Aquivion ionomer binder, Nafion 117 membrane, and without back pressurizing. In a continuous operation the cell voltage degradation rate of the MEA using Aquivion ionomer binder was only about 0.82 mV h.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose. To develop a protocol for isolating and culturing murine adult retinal microglia and to characterize the phenotype and function of the cultured cells. Method. Retinal single-cell suspensions were prepared from adult MF1 mice. Culture conditions including culture medium, growth factors, seeding cell density, and purification of microglia from the mixed cultures were optimised. Cultured retinal microglial cells were phenotyped using the surface markers CD45, CD11b, and F4/80. Their ability to secrete proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation was examined using cytometric bead array (CBA) assay. Results. Higher yield was obtained when retinal single-cell suspension was cultured at the density of cells per cm2 in Dulbecco’s modified Eagle medium (DMEM)/F12 + Glutamax supplement with 20% fetal calf serum (FCS) and 20% L929 supernatant. We identified day 10 to be the optimum day of microglial isolation. Over 98% of the cells isolated were positive for CD45, CD11b, and F4/80. After stimulating with LPS they were able to secrete proinflammatory cytokines such as IL-6 and TNF-α and express CD86, CD40, and MHC-II. Conclusion. We have developed a simple method for isolating and culturing retinal microglia from adult mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increased access to books afforded to blind people via e-publishing has given them long-sought independence for both recreational and educational reading. In most cases, blind readers access materials using speech output. For some content such as highly technical texts, music, and graphics, speech is not an appropriate access modality as it does not promote deep understanding. Therefore blind braille readers often prefer electronic braille displays. But these are prohibitively expensive. The search is on, therefore, for a low-cost refreshable display that would go beyond current technologies and deliver graphical content as well as text. And many solutions have been proposed, some of which reduce costs by restricting the number of characters that can be displayed, even down to a single braille cell. In this paper, we demonstrate that restricting tactile cues during braille reading leads to poorer performance in a letter recognition task. In particular, we show that lack of sliding contact between the fingertip and the braille reading surface results in more errors and that the number of errors increases as a function of presentation speed. These findings suggest that single cell displays which do not incorporate sliding contact are likely to be less effective for braille reading.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The ovarian surface epithelium responds to cytokines and hormonal cues to initiate proliferation and migration following ovulation. Although insulin and IGF are potent proliferative factors for the ovarian surface epithelium and IGF is required for follicle development, increased insulin and IGF activity are correlated with at least two gynecologic conditions: polycystic ovary syndrome and epithelial ovarian cancer. Although insulin and IGF are often components of in vitro culture media, little is known about the effects that these growth factors may have on the ovarian surface epithelium morphology or how signaling in the ovarian surface may affect follicular health and development.

METHODS: Ovaries from CD1 mice were cultured in alginate hydrogels in the presence or absence of 5 μg/ml insulin or IGF-I, as well as small molecule inhibitors of IR/IGF1R, PI 3-kinase signaling, or MAPK signaling. Tissues were analyzed by immunohistochemistry for expression of cytokeratin 8 to mark the ovarian surface epithelium, Müllerian inhibiting substance to mark secondary follicles, and BrdU incorporation to assess proliferation. Changes in gene expression in the ovarian surface epithelium in response to insulin or IGF-I were analyzed by transcription array. Extracellular matrix organization was evaluated by expression and localization of collagen IV.

RESULTS: Culture of ovarian organoids with insulin or IGF-I resulted in formation of hyperplastic OSE approximately 4-6 cell layers thick with a high rate of proliferation, as well as decreased MIS expression in secondary follicles. Inhibition of the MAPK pathway restored MIS expression reduced by insulin but only partially restored normal OSE growth and morphology. Inhibition of the PI 3-kinase pathway restored MIS expression reduced by IGF-I and restored OSE growth to a single cell layer. Insulin and IGF-I altered organization of collagen IV, which was restored by inhibition of PI 3-kinase signaling.

CONCLUSIONS: While insulin and IGF are often required for propagation of primary cells, these cytokines may act as potent mitogens to disrupt cell growth, resulting in formation of hyperplastic OSE and decreased follicular integrity as measured by MIS expression and collagen deposition. This may be due partly to altered collagen IV deposition and organization in the ovary in response to insulin and IGF signaling mediated by PI 3-kinase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uniform submicron La2NiO4+δ (sm-LNO) powders have been synthesized by a facile polyvinylpyrrolidone (PVP)-assisted hydrothermal route. In the presence of PVP, sm-LNO of pure phase has been obtained by calcination at the relatively low temperature of 900 °C for 8 h. Compared micron-sized LNO (m-LNO) particles obtained at 1,000 °C by hydrothermal synthesis route without PVP assisted, the sm-LNO-PVP displays regularly shaped and well-distributed particles in the range of 0.3–0.5 μm. The scanning electron microscopy (SEM) results showed that the sm-LNO sample is submicronic and that the m-LNO sample shows agglomerates with a broad size distribution. The electrochemical performance of m-LNO and sm-LNO-PVP has been investigated by electrochemical impedance spectroscopy. The polarization resistance of the sm-LNO-PVP cathode reaches a value of 0.40 Ω cm2 at 750 °C, which is lower than that of m-LNO (0.62 Ω cm2). This result indicates that a fine electrode microstructure with submicron particles can help to increase the active sites, accelerate oxygen diffusion, and reduce polarization resistance. An anode-supported single cell with sm-LNO cathode has been fabricated and tested over a temperature range from 650 to 800 °C. The maximum power density of the cell has achieved 834 mW cm−2 at 750 °C. These results therefore show that this PVP-assisted hydrothermal method is an effective approach to construct submicron-structured cathode and enhance the performance of intermediate temperature solid oxide fuel cell.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, niobium doping is evaluated as a means of enhancing the electrochemical performance of a Sr2Fe1.5Mo0.5O6-δ (SFM) perovskite structure cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications. As the radius of Nb approximates that of Mo and exhibits +4/+5 mixed valences, its substitution is expected to improve material performance. A series of Sr2Fe1.5Mo0.5-xNbxO6-δ (x = 0.05, 0.10, 0.15, 0.20) cathode materials are prepared and the phase structure, chemical compatibility, microstructure, electrical conductivity, polarization resistance and power generation are systematically characterized. Among the series of samples, Sr2Fe1.5Mo0.4Nb0.10O6-δ (SFMNb0.10) exhibits the highest conductivity value of 30 S cm-1 at 550°C, and the lowest area specific resistance of 0.068 Ω cm2 at 800°C. Furthermore, an anode-supported single cell incorporating a SFMNb0.10 cathode presents a maximum power density of 1102 mW cm-2 at 800°C. Furthermore no obvious performance degradation is observed over 15 h at 750°C with wet H2(3% H2O) as fuel and ambient air as the oxidant. These results demonstrate that SFMNb shows great promise as a novel cathode material for IT-SOFCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Membrane currents were recorded under voltage clamp from root hairs of Arabidopsis thaliana L. using the two-electrode method. Concurrent measurements of membrane voltage distal to the point of current injection were also carried out to assess the extent of current dissipation along the root hair axis. Estimates of the characteristic cable length, λ, showed this parameter to be a function both of membrane voltage and of substrate concentration for transport. The mean value for λ at 0 mV was 103 ± 20 μm (n=17), but ranged by as much as 6-fold in any one cell for membrane voltages from -300 to +40 mV and was affected by 0.25 to 3-fold at any one voltage on raising [K+]0 from 0.1 to 10 mol m-3. Current dissipation along the length of the cells lead to serious distortions of the current-voltage [I-V) characteristic, including consistent underestimates of membrane current as well as a general linearization of the I-V curve and a masking of conductance changes in the presence of transported substrates. In some experiments, microelectrodes were also placed in neighbouring epidermal cells to record the extent of intercellular coupling. Even with current-passing microelectrodes placed at the base of root hairs, coupling was ≤5% (voltage deflection of the epidermal cell ≤5% that recorded at the site of current injection), indicating an appreciable resistance to current passage between cells. These results demonstrate the feasibility of using root hairs as a 'single-cell model' in electrophysiological analyses of transport across the higher-plant plasma membrane; they also confirmed the need to correct for the cable properties of these cells on a cell-by-cell basis. © 1994 Oxford University Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we consider the uplink of a single-cell multi-user single-input multiple-output (MU-SIMO) system with in-phase and quadrature-phase imbalance (IQI). Particularly, we investigate the effect of receive (RX) IQI on the performance of MU-SIMO systems with large antenna arrays employing maximum-ratio combining (MRC) receivers. In order to study how IQI affects channel estimation, we derive a new channel estimator for the IQI-impaired model and show that the higher the value of signal-to-noise ratio (SNR) the higher the impact of IQI on the spectral efficiency (SE). Moreover, a novel pilot-based joint estimator of the augmented MIMO channel matrix and IQI coefficients is described and then, a low-complexity IQI compensation scheme is proposed which is based on the
IQI coefficients’ estimation and it is independent of the channel gain. The performance of the proposed compensation scheme is analytically evaluated by deriving a tractable approximation of the ergodic SE assuming transmission over Rayleigh fading channels with large-scale fading. Furthermore, we investigate how many MSs should be scheduled in massive multiple-input multiple-output (MIMO) systems with IQI and show that the highest SE loss occurs at the optimal operating point. Finally,
by deriving asymptotic power scaling laws, and proving that the SE loss due to IQI is asymptotically independent of the number of BS antennas, we show that massive MIMO is resilient to the effect of RX IQI.