89 resultados para Signal-to-noise Ratio


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes max separation clustering (MSC), a new non-hierarchical clustering method used for feature extraction from optical emission spectroscopy (OES) data for plasma etch process control applications. OES data is high dimensional and inherently highly redundant with the result that it is difficult if not impossible to recognize useful features and key variables by direct visualization. MSC is developed for clustering variables with distinctive patterns and providing effective pattern representation by a small number of representative variables. The relationship between signal-to-noise ratio (SNR) and clustering performance is highlighted, leading to a requirement that low SNR signals be removed before applying MSC. Experimental results on industrial OES data show that MSC with low SNR signal removal produces effective summarization of the dominant patterns in the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the separation and recognition of overlapped speech sentences assuming single-channel observation. A system based on a combination of several different techniques is proposed. The system uses a missing-feature approach for improving crosstalk/noise robustness, a Wiener filter for speech enhancement, hidden Markov models for speech reconstruction, and speaker-dependent/-independent modeling for speaker and speech recognition. We develop the system on the Speech Separation Challenge database, involving a task of separating and recognizing two mixing sentences without assuming advanced knowledge about the identity of the speakers nor about the signal-to-noise ratio. The paper is an extended version of a previous conference paper submitted for the challenge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A proof-of-concept study was reported on analysis of antigen-antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles on a microimaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, tiny 30 nm Au nanoparticles were effectively used as nanosensors to monitor changes in refractive index induced by every single binding of the adsorbates. The individual Au nanoparticles were observed with very high signal-to-noise ratio, and a LSPR ?max shift of about 2.5 nm accounting for the detection of PSA antigen with concentration as low as 0.1 pg ml-1 was recorded. This resulted in the successful demonstration of a non-labelling detection system for proteins as well as thousands of different chemical or biological species with possibility of miniaturization and multiplexing scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper elaborates on the ergodic capacity of fixed-gain amplify-and-forward (AF) dual-hop systems, which have recently attracted considerable research and industry interest. In particular, two novel capacity bounds that allow for fast and efficient computation and apply for nonidentically distributed hops are derived. More importantly, they are generic since they apply to a wide range of popular fading channel models. Specifically, the proposed upper bound applies to Nakagami-m, Weibull, and generalized-K fading channels, whereas the proposed lower bound is more general and applies to Rician fading channels. Moreover, it is explicitly demonstrated that the proposed lower and upper bounds become asymptotically exact in the high signal-to-noise ratio (SNR) regime. Based on our analytical expressions and numerical results, we gain valuable insights into the impact of model parameters on the capacity of fixed-gain AF dual-hop relaying systems. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose transmit antenna selection with receive generalized selection combining (TAS/GSC) in dual-hop cognitive decode-and-forward (DF) relay networks for reliability enhancement and interference relaxation. In this paradigm, a single antenna which maximizes the receive signal-to-noise ratio (SNR) is selected at the secondary transmitter and a subset of receive antennas with the highest SNRs are combined at the secondary receiver. To demonstrate the impact of multiple primary users on the cognitive relay network, we derive new closed-form expressions for the exact and asymptotic outage probability with TAS/GSC in the secondary network. Several important design insights are reached. We corroborate that the full diversity gain is achieved, which is entirely determined by the total number of antennas in the secondary network. The negative impact of the primary network on the secondary network is reflected in the SNR gain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate a multiuser cognitive relay network with direct source-destination links and multiple primary destinations. In this network, multiple secondary users compete to communicate with a secondary destination assisted by an amplify-and-forward (AF) relay. We take into account the availability of direct links from the secondary users to the primary and secondary destinations. For the considered system, we select one best secondary user to maximize the received signal-to-noise ratio (SNR) at the secondary destination. We first derive an accurate lower bound of the outage probability, and then provide an asymptotic expression of outage probability in high SNR region. From the lower bound and the asymptotic expressions, we obtain several insights into the system design. Numerical and simulation results are finally demonstrated to verify the proposed studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the impact of transmit antenna selection with receive generalized selection combining (TAS/GSC) for cognitive decode-and-forward (DF) relaying in Nakagami-m fading channels. We select a single transmit antenna at the secondary transmitter which maximizes the receive signal-to-noise ratio (SNR) and combine a subset of receive antennas with the largest SNRs at the secondary receiver. In an effort to assess the performance, we first derive the probability density function and cumulative distribution function of the end-to-end SNR using the moment generating function. We then derive new exact closed-form expression for the ergodic capacity. More importantly, by deriving the asymptotic expression for the high SNR approximation of the ergodic capacity, we gather deep insights into the high SNR slope and the power offset. Our results show that the high SNR slope is 1/2 under the proportional interference power constraint. Under the fixed interference power constraint, the high SNR slope is zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose transmit antenna selection (TAS) in decode-and-forward (DF) relaying as an effective approach to reduce the interference in underlay spectrum sharing networks with multiple primary users (PUs) and multiple antennas at the secondary users (SUs). We compare two distinct protocols: 1) TAS with receiver maximal-ratio combining (TAS/MRC) and 2) TAS with receiver selection combining (TAS/SC). For each protocol, we derive new closed-form expressions for the exact and asymptotic outage probability with independent Nakagami-m fading in the primary and secondary networks. Our results are valid for two scenarios related to the maximum SU transmit power, i.e., P, and the peak PU interference temperature, i.e., Q. When P is proportional to Q, our results confirm that TAS/MRC and TAS/SC relaying achieve the same full diversity gain. As such, the signal-to-noise ratio (SNR) advantage of TAS/MRC relaying relative to TAS/SC relaying is characterized as a simple ratio of their respective SNR gains. When P is independent of Q, we find that an outage floor is obtained in the large P regime where the SU transmit power is constrained by a fixed value of Q. This outage floor is accurately characterized by our exact and asymptotic results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical transceivers have hardware impairments that create distortions which degrade the performance of communication systems. The vast majority of technical contributions in the area of relaying neglect hardware impairments and, thus, assume ideal hardware. Such approximations make sense in low-rate systems, but can lead to very misleading results when analyzing future high-rate systems. This paper quantifies the impact of hardware impairments on dual-hop relaying, for both amplify-and-forward and decode-and-forward protocols. The outage probability (OP) in these practical scenarios is a function of the effective end-to-end signal-to-noise-and-distortion ratio (SNDR). This paper derives new closed-form expressions for the exact and asymptotic OPs, accounting for hardware impairments at the source, relay, and destination. A similar analysis for the ergodic capacity is also pursued, resulting in new upper bounds. We assume that both hops are subject to independent but non-identically distributed Nakagami-m fading. This paper validates that the performance loss is small at low rates, but otherwise can be very substantial. In particular, it is proved that for high signal-to-noise ratio (SNR), the end-to-end SNDR converges to a deterministic constant, coined the SNDR ceiling, which is inversely proportional to the level of impairments. This stands in contrast to the ideal hardware case in which the end-to-end SNDR grows without bound in the high-SNR regime. Finally, we provide fundamental design guidelines for selecting hardware that satisfies the requirements of a practical relaying system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of secure transmission in two-hop amplify-and-forward untrusted relay networks. We analyze the ergodic secrecy capacity (ESC) and present compact expressions for the ESC in the high signal-to-noise ratio regime. We also examine the impact of large scale antenna arrays at either the source or the destination. For large antenna arrays at the source, we confirm that the ESC is solely determined by the channel between the relay and the destination. For very large antenna arrays at the destination, we confirm that the ESC is solely determined by the channel between the source and the relay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a multiuser cognitive relay network, where multiple secondary sources communicate with a secondary destination through the assistance of a secondary relay in the presence of secondary direct links and multiple primary receivers. We consider the two relaying protocols of amplify-and-forward (AF) and decode-and-forward (DF), and take into account the availability of direct links from the secondary sources to the secondary destination. With this in mind, we propose an optimal solution for cognitive multiuser scheduling by selecting the optimal secondary source, which maximizes the received signal-to-noise ratio (SNR) at the secondary destination using maximal ratio combining. This is done by taking into account both the direct link and the relay link in the multiuser selection criterion. For both AF and DF relaying protocols, we first derive closed-form expressions for the outage probability and then provide the asymptotic outage probability, which determines the diversity behavior of the multiuser cognitive relay network. Finally, this paper is corroborated by representative numerical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates the end-to-end performance of randomized distributed space-time codes with complex Gaussian distribution, when employed in a wireless relay network. The relaying nodes are assumed to adopt a decode-and-forward strategy and transmissions are affected by small and large scale fading phenomena. Extremely tight, analytical approximations of the end-to-end symbol error probability and of the end-to-end outage probability are derived and successfully validated through Monte-Carlo simulation. For the high signal-to-noise ratio regime, a simple, closed-form expression for the symbol error probability is further provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the impact of multiple active eavesdroppers on cooperative single carrier systems with multiple relays and multiple destinations is examined. To achieve the secrecy diversity gains in the form of opportunistic selection, a two-stage scheme is proposed for joint relay and destination selection, in which, after the selection of the relay with the minimum effective maximum signal-to-noise ratio (SNR) to a cluster of eavesdroppers, the destination that has the maximum SNR from the chosen relay is selected. In order to accurately assess the secrecy performance, the exact and asymptotic expressions are obtained in closed-form for several security metrics including the secrecy outage probability, the probability of non-zero secrecy rate, and the ergodic secrecy rate in frequency selective fading. Based on the asymptotic analysis, key design parameters such as secrecy diversity gain, secrecy array gain, secrecy multiplexing gain, and power cost are characterized, from which new insights are drawn. Moreover, it is concluded that secrecy performance limits occur when the average received power at the eavesdropper is proportional to the counterpart at the destination. Specifically, for the secrecy outage probability, it is confirmed that the secrecy diversity gain collapses to zero with outage floor, whereas for the ergodic secrecy rate, it is confirmed confirm that its slope collapses to zero with capacity ceiling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the information-theoretical security of a downlink multiuser cooperative relaying network with multiple intermediate amplify-and-forward (AF) relays, where there exist multiple eavesdroppers which can overhear the message. To prevent the wiretap and strength the network security, we select one best relay and user pair, so that the selected user can receive the message from the base station assisted by the selected relay. The relay and user selection is performed by maximizing the ratio of the received signal-to-noise ratio (SNR) at the user to the eavesdroppers, which is based on both the main and eavesdropper links. For the considered system, we derive the closed-form expression of the secrecy outage probability, and provide the asymptotic expression in high main-to-eavesdropper ratio (MER) region. From the asymptotic analysis, we can find that the system diversity order is equivalent to the number of relays regardless of the number of users and eavesdroppers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes relay selection in order to increase the physical layer security in multiuser cooperative relay networks with multiple amplify-and-forward (AF) relays, in the presence of multiple eavesdroppers. To strengthen the network security against eavesdropping attack, we present three criteria to select the best relay and user pair. Specifically, criterion I and II study the received signal-to-noise ratio (SNR) at the receivers, and perform the selection by maximizing the SNR ratio of the user to the eavesdroppers. To this end, criterion I relies on both the main and eavesdropper links, while criterion II relies on the main links only. Criterion III is the standard max-min selection criterion,
which maximizes the minimum of the dual-hop channel gains of main links. For the three selection criteria, we examine the system secrecy performance by deriving the analytical expressions for the secrecy outage probability. We also derive the asymptotic analysis for the secrecy outage probability with high main-to eavesdropper ratio (MER). From the asymptotic analysis, an interesting observation is reached: for each criterion, the system diversity order is equivalent to the number of relays regardless of the number of users and eavesdroppers.