67 resultados para Self-exciting Model
Resumo:
Aims. A magneto-hydrostatic model is constructed with spectropolarimetric properties close to those of solar photospheric magnetic bright points.
Methods. Results of solar radiative magneto-convection simulations are used to produce the spatial structure of the vertical component of the magnetic field. The horizontal component of magnetic field is reconstructed using the self-similarity condition, while the magneto-hydrostatic equilibrium condition is applied to the standard photospheric model with the magnetic field embedded. Partial ionisation processes are found to be necessary for reconstructing the correct temperature structure of the model.
Results. The structures obtained are in good agreement with observational data. By combining the realistic structure of the magnetic field with the temperature structure of the quiet solar photosphere, the continuum formation level above the equipartition layer can be found. Preliminary results are shown of wave propagation through this magnetic structure. The observational consequences of the oscillations are examined in continuum intensity and in the Fe I 6302 angstrom magnetically sensitive line.
Resumo:
This paper presents a practical algorithm for the simulation of interactive deformation in a 3D polygonal mesh model. The algorithm combines the conventional simulation of deformation using a spring-mass-damping model, solved by explicit numerical integration, with a set of heuristics to describe certain features of the transient behaviour, to increase the speed and stability of solution. In particular, this algorithm was designed to be used in the simulation of synthetic environments where it is necessary to model realistically, in real time, the effect on non-rigid surfaces being touched, pushed, pulled or squashed. Such objects can be solid or hollow, and have plastic, elastic or fabric-like properties. The algorithm is presented in an integrated form including collision detection and adaptive refinement so that it may be used in a self-contained way as part of a simulation loop to include human interface devices that capture data and render a realistic stereoscopic image in real time. The algorithm is designed to be used with polygonal mesh models representing complex topology, such as the human anatomy in a virtual-surgery training simulator. The paper evaluates the model behaviour qualitatively and then concludes with some examples of the use of the algorithm.
Resumo:
We demonstrate for the first time a tight binding model for water incorporating polarizable oxygen atoms. A novel aspect is that we adopt a ``ground up'' approach in that properties of the monomer and dimer only are fitted. Subsequently we make predictions of the structure and properties of hexamer clusters, ice-XI and liquid water. A particular feature, missing in current tight binding and semiempirical hamiltonians, is that we reproduce the almost two-fold increase in molecular dipole moment as clusters are built up towards the limit of bulk liquid. We concentrate on properties of liquid water, particularly dielectric constant and self diffusion coefficient, which are very well rendered in comparison with experiment. Finally we comment on the question of the contrasting densities of water and ice which is central to an understanding of the subtleties of the hydrogen bond.
Resumo:
Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, may self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott insulator, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity-field intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the phase is compressible. These states could be realized in existing experimental setups.
Resumo:
Two semianalytical relations [Nature, 1996, 381, 137 and Phys. Rev. Lett. 2001, 87, 245901] predicting dynamical coefficients of simple liquids on the basis of structural properties have been tested by extensive molecular dynamics simulations for an idealized 2:1 model molten salt. In agreement with previous simulation studies, our results support the validity of the relation expressing the self-diffusion coefficient as a Function of the radial distribution functions for all thermodynamic conditions such that the system is in the ionic (ie., fully dissociated) liquid state. Deviations are apparent for high-density samples in the amorphous state and in the low-density, low-temperature range, when ions condense into AB(2) molecules. A similar relation predicting the ionic conductivity is only partially validated by our data. The simulation results, covering 210 distinct thermodynamic states, represent an extended database to tune and validate semianalytical theories of dynamical properties and provide a baseline for the interpretation of properties of more complex systems such as the room-temperature ionic liquids.
Resumo:
We propose as energy-constrained sandpile model with random neighbors. The critical behavior of the model is in the same universality class as the mean-field self-organized criticality sandpile. The critical energy E-c depends on the number of neighbors n of each site, but the various exponents do not. For n = 6, we got that E-c = 0.4545; and a self-similar structure of the energy distribution function with five major peaks is also observed. This is a natural result of system dynamics and the way the system is disturbed.
Resumo:
We propose a one-dimensional rice-pile model which connects the 1D BTW sandpile model (Phys. Rev. A 38 (1988) 364) and the Oslo rice-pile model (Phys. Rev. Lett. 77 (1997) 107) in a continuous manner. We found that for a sufficiently large system, there is a sharp transition between the trivial critical behaviour of the 1D BTW model and the self-organized critical (SOC) behaviour. When there is SOC, the model belongs to a known universality class with the avalanche exponent tau = 1.53. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Automated examination timetabling has been addressed by a wide variety of methodologies and techniques over the last ten years or so. Many of the methods in this broad range of approaches have been evaluated on a collection of benchmark instances provided at the University of Toronto in 1996. Whilst the existence of these datasets has provided an invaluable resource for research into examination timetabling, the instances have significant limitations in terms of their relevance to real-world examination timetabling in modern universities. This paper presents a detailed model which draws upon experiences of implementing examination timetabling systems in universities in Europe, Australasia and America. This model represents the problem that was presented in the 2nd International Timetabling Competition (ITC2007). In presenting this detailed new model, this paper describes the examination timetabling track introduced as part of the competition. In addition to the model, the datasets used in the competition are also based on current real-world instances introduced by EventMAP Limited. It is hoped that the interest generated as part of the competition will lead to the development, investigation and application of a host of novel and exciting techniques to address this important real-world search domain. Moreover, the motivating goal of this paper is to close the currently existing gap between theory and practice in examination timetabling by presenting the research community with a rigorous model which represents the complexity of the real-world situation. In this paper we describe the model and its motivations, followed by a full formal definition.
Resumo:
Here a self-consistent one-dimensional continuum model is presented for a narrow gap plane-parallel dc glow discharge. The governing equations consist of continuity and momentum equations for positive and negative ions and electrons coupled with Poisson's equation. A singular perturbation method is developed for the analysis of high pressure dc glow discharge. The kinetic processes of the ionization, electron attachment, and ion-ion recombination are included in the model. Explicit results are obtained for the asymptotic limits: delta=(r(D)/L)(2)--> 0, omega=(r(S)/L)(2)--> 0, where r(D) is the Debye radius, r(S) is recombination length, and L is the gap length. The discharge gap divides naturally into four layers with multiple space scales: anode fall region, positive column, transitional region, cathode fall region and diffusion layer adjacent to the cathode surface, its formation is discussed. The effects of the gas pressure, gap spacing and dc voltage on the electrical properties of the layers and its dimension are investigated. (C) 2000 American Institute of Physics. [S0021-8979(00)00813-6].
Resumo:
Analyses regularly feature claims that European welfare states are in the process of creating an adult worker model. The theoretical and empirical basis of this argument is examined here by looking first at the conceptual foundations of the adult worker model formulation and then at the extent to which social policy reform in western Europe fits with the argument. It is suggested that the adult worker formulation is under-specified. A framework incorporating four dimensions—the treatment of individuals vis-à-vis their family role and status for the purposes of social rights, the treatment of care, the treatment of the family as a social institution, and the extent to which gender inequality is problematized—is developed and then applied. The empirical analysis reveals a strong move towards individualization as social policy promotes and valorizes individual agency and self-sufficiency and shifts some childcare from the family. Yet evidence is also found of continued (albeit changed) familism. Rather than an unequivocal move to an individualized worker model then, a dual earner, gender-specialized, family arrangement is being promoted. The latter is the middle way between the old dependencies and the new “independence.” This makes for complexity and even ambiguity in policy, a manifestation of which is that reform within countries involves concurrent moves in several directions.
Resumo:
This paper presents the trajectory control of a 2DOF mini electro-hydraulic excavator by using fuzzy self tuning with neural network algorithm. First, the mathematical model is derived for the 2DOF mini electro-hydraulic excavator. The fuzzy PID and fuzzy self tuning with neural network are designed for circle trajectory following. Its two links are driven by an electric motor controlled pump system. The experimental results demonstrated that the proposed controllers have better control performance than the conventional controller.
Resumo:
S. C. Wright, A. Aron, T. McLaughlin-Volpe, and S. A. Ropp (1997) proposed that the benefits associated with cross-group friendship might also stem from vicarious experiences of friendship. Extended contact was proposed to reduce prejudice by reducing intergroup anxiety, by generating perceptions of positive ingroup and outgroup norms regarding the other group, and through inclusion of the outgroup in the self. This article documents the first test of Wright et al.'s model, which used structural equation modeling among two independent samples in the context of South Asian-White relations in the United Kingdom. Supporting the model, all four variables mediated the relationship between extended contact and outgroup attitude, controlling for the effect of direct contact. A number of alternative models were ruled out, indicating that the four mediators operate concurrently rather than predicting one another.
Resumo:
Self-assembled electrodeposited nanorod materials have been shown to offer an exciting landscape for a wide array of research ranging from nanophotonics through to biosening and magnetics. However, until now, the scope for site-specific preparation of the nanorods on wafers is limited to local area definition. Further there is little or no lateral control of nanorod height. In this work we present a scalable method for controlling the growth of the nanorods in the vertical direction as well as their lateral position. A focused ion beam (FIB) pre-patterns the Au cathode layer prior to the creation of the Anodized Aluminium Oxide (AAO) template on top. When the pre-patterning is of the same dimension to the pore spacing of the AAO template, lines of single nanorods are successfully grown. Further, for sub-200 nm wide features a relationship between the nanorod height and distance from non-patterned cathode can be seen to follow a quadratic growth rate obeying Faradays law of electrodeposition. This facilitates lateral control of nanorod height combined with localised growth of the nanorods.
Resumo:
Objectives: Family caregivers play a vital role in maintaining the lives of individuals with advanced illness living in the community. However, the responsibility of caregiving for an end-of-life family member can have profound consequences on the psychological, physical and financial well-being of the caregiver. While the literature has identified caregiver stress or strain as a complex process with multiple contributing factors, few comprehensive studies exist. This study examined a wide range of theory-driven variables contributing to family caregiver stress. Method: Data variables from interviews with primary family caregivers were mapped onto the factors within the Stress Process Model theoretical framework. A hierarchical multiple linear regression analysis was used to determine the strongest predictors of caregiver strain as measured by a validated composite index, the Caregiver Strain Index. Results: The study included 132 family caregivers across south-central/western Ontario, Canada. About half of these caregivers experienced high strain, the extent of which was predicted by lower perceived program accessibility, lower functional social support, greater weekly amount of time caregivers committed to the care recipient, younger caregiver age and poorer caregiver self-perceived health. Conclusion: This study examined the influence of a multitude of factors in the Stress Process Model on family caregiver strain, finding stress to be a multidimensional construct. Perceived program accessibility was the strongest predictor of caregiver strain, more so than intensity of care, highlighting the importance of the availability of community resources to support the family caregiving role.
Resumo:
Objective: To determine the organizational predictors of higher scores on team climate measures as an indicator of the functioning of a family health team (FHT). Design: Cross-sectional study using a mailed survey. Setting: Family health teams in Ontario. Participants: Twenty-one of 144 consecutively approached FHTs; 628 team members were surveyed. Main outcome measures: Scores on the team climate inventory, which assessed organizational culture type (group, developmental, rational, or hierarchical); leadership perceptions; and organizational factors, such as use of electronic medical records (EMRs), team composition, governance of the FHT, location, meetings, and time since FHT initiation. All analyses were adjusted for clustering of respondents within the FHT using a mixed random-intercepts model. Results: The response rate was 65.8% (413 of 628); 2 were excluded from analysis, for a total of 411 participants. At the time of survey completion, there was a median of 4 physicians, 11 other health professionals, and 4 management and clerical staff per FHT. The average team climate score was 3.8 out of a possible 5. In multivariable regression analysis, leadership score, group and developmental culture types, and use of more EMR capabilities were associated with higher team climate scores. Other organizational factors, such as number of sites and size of group, were not associated with the team climate score. Conclusion: Culture, leadership, and EMR functionality, rather than organizational composition of the teams (eg, number of professionals on staff, practice size), were the most important factors in predicting climate in primary care teams.