94 resultados para Scientific instrument
Resumo:
The field of surface polariton physics really took off with the prism coupling techniques developed by Kretschmann and Raether, and by Otto. This article reports on the construction and operation of a rotatable, in vacuo, variable temperature, Otto coupler with a coupling gap that can be varied by remote control. The specific design attributes of the system offer additional advantages to those of standard Otto systems of (i) temperature variation (ambient to 85 K), and (ii) the use of a valuable, additional reference point, namely the gap-independent reflectance at the Brewster angle at any given, fixed temperature. The instrument is placed firmly in a historical context of developments in the field. The efficacy of the coupler is demonstrated by sample attenuated total reflectance results on films of platinum, niobium, and yttrium barium copper oxide and on aluminum/gallium arsenide (Al/GaAs) Schottky diode structures. (C) 2000 American Institute of Physics. [S0034-6748(00)02411-4].
Resumo:
A study was conducted by researchers to address the individuation of performance with electronic instruments. The researchers derived a working concept of style as distinct from structure in an activity, which was proposed as a useful framework for considering virtuosity and individuality in interactions with technology, including musical ones. The researchers proposed an alliance between constraint and the development of style. Another study was described, which explored the emergence of personal performance styles in experienced performers with a novel, constrained electronic musical instrument. The study aimed to represent aspects of a realistic situation within the new interfaces for musical expression (NIME) community where a performer needed to determine how to perform with a new instrument for which there was no established performance practice and instruction manual.
Resumo:
P>Seven cases were discussed by an expert panel at the 2009 Annual Scientific Meeting of the British Society of Haematology. These cases are presented in a similar format to that adopted for the meeting. There was an initial discussion of the presenting morphology, generation of differential diagnoses and then, following display of further presenting and diagnostic information, each case was concluded with provision of a final diagnosis.
Resumo:
Thomas Kuhn’s concept of a normal science paradigm has been utilised and criticised across a range of social science fields. However, Kuhn’s aim was to argue that science progresses not in an incremental manner but through a series of paradigms that need a revolution in thought to shift from one to the next. This paper addresses Kuhn’s work focusing on the totality of his model, but recognising the ambiguities concerning paradigm shifts that have led to charges of relativism. To address this weakness an argument is advanced for a political economy analysis of the publication process and the development of critical accounting research centred on human emancipation. The paper concludes with some suggested research agendas particularly relevant to the Irish context.
Resumo:
WASP-13b is a sub-Jupiter mass exoplanet orbiting a G1V type star with a period of 4.35 d.The current uncertainty in its impact parameter (0 < b < 0.46) results in poorly definedstellar and planetary radii. To better constrain the impact parameter, we have obtained highprecisiontransit observations with the rapid imager to search for exoplanets (RISE) instrumentmounted on 2.0-m Liverpool Telescope. We present four new transits which are fitted witha Markov chain Monte Carlo routine to derive accurate system parameters. We found anorbital inclination of 85. ◦ 2 ± 0. ◦ 3 resulting in stellar and planetary radii of 1.56 ± 0.04 Rand 1.39 ± 0.05RJup, respectively. This suggests that the host star has evolved off the mainsequence and is in the hydrogen-shell-burning phase.We also discuss how the limb darkeningaffects the derived system parameters.With a density of 0.17ρJ,WASP-13b joins the group oflow-density planets whose radii are too large to be explained by standard irradiation models.We derive a new ephemeris for the system, T0 = 245 5575.5136 ± 0.0016 (HJD) and P =4.353 011 ± 0.000 013 d. The planet equilibrium temperature (Tequ = 1500 K) and the brighthost star (V = 10.4mag) make it a good candidate for follow-up atmospheric studies.
Resumo:
Computing has recently reached an inflection point with the introduction of multicore processors. On-chip thread-level parallelism is doubling approximately every other year. Concurrency lends itself naturally to allowing a program to trade performance for power savings by regulating the number of active cores; however, in several domains, users are unwilling to sacrifice performance to save power. We present a prediction model for identifying energy-efficient operating points of concurrency in well-tuned multithreaded scientific applications and a runtime system that uses live program analysis to optimize applications dynamically. We describe a dynamic phase-aware performance prediction model that combines multivariate regression techniques with runtime analysis of data collected from hardware event counters to locate optimal operating points of concurrency. Using our model, we develop a prediction-driven phase-aware runtime optimization scheme that throttles concurrency so that power consumption can be reduced and performance can be set at the knee of the scalability curve of each program phase. The use of prediction reduces the overhead of searching the optimization space while achieving near-optimal performance and power savings. A thorough evaluation of our approach shows a reduction in power consumption of 10.8 percent, simultaneous with an improvement in performance of 17.9 percent, resulting in energy savings of 26.7 percent.