65 resultados para Scalar Functions of one Variable
Resumo:
We consider a non-standard application of the Wannier model. A physical example is the single ionization of a hydrogenic beryllium ion with a fully stripped beryllium ion, where the ratio of the charge of the third particle to the charges of the escaping particles is 1/4; we investigate the single ionization by an electron of an atom comprising an electron and a nucleus of charge 1/4. An infinite exponent is obtained suggesting that this process is not tractable within the Wannier model. A modified version of Crothers' uniform semiclassical wavefunction for the outgoing particles has been adopted, since the Wannier exponents and are infinite for an effective charge of Z = 1/4. We use Bessel functions to describe the Peterkop functions u and u and derive a new turning point ?. Since u is well behaved at infinity, there exists only the singularity in u at infinity, thus we employ a one- (rather than two-) dimensional change of dependent variable, ensuring that a uniform solution is obtained that avoids semiclassical breakdown on the Wannier ridge. The regularized final-state asymptotic wavefunction is employed, along with a continuum-distorted-wave approximation for the initial-state wavefunction to obtain total cross sections on an absolute scale. © 2006 IOP Publishing Ltd.
Resumo:
We construct $x^0$ in ${\Bbb R}^{\Bbb N}$ and a row-finite matrix $T=\{T_{i,j}(t)\}_{i,j\in\N}$ of polynomials of one real variable $t$ such that the Cauchy problem $\dot x(t)=T_tx(t)$, $x(0)=x^0$ in the Fr\'echet space $\R^\N$ has no solutions. We also construct a row-finite matrix $A=\{A_{i,j}(t)\}_{i,j\in\N}$ of $C^\infty(\R)$ functions such that the Cauchy problem $\dot x(t)=A_tx(t)$, $x(0)=x^0$ in ${\Bbb R}^{\Bbb N}$ has no solutions for any $x^0\in{\Bbb R}^{\Bbb N}\setminus\{0\}$. We provide some sufficient condition of solvability and of unique solvability for linear ordinary differential equations $\dot x(t)=T_tx(t)$ with matrix elements $T_{i,j}(t)$ analytically dependent on $t$.
Resumo:
Incoherent Thomson scattering (ITS) provides a nonintrusive diagnostic for the determination of one-dimensional (1D) electron velocity distribution in plasmas. When the ITS spectrum is Gaussian its interpretation as a three-dimensional (3D) Maxwellian velocity distribution is straightforward. For more complex ITS line shapes derivation of the corresponding 3D velocity distribution and electron energy probability distribution function is more difficult. This article reviews current techniques and proposes an approach to making the transformation between a 1D velocity distribution and the corresponding 3D energy distribution. Previous approaches have either transformed the ITS spectra directly from a 1D distribution to a 3D or fitted two Gaussians assuming a Maxwellian or bi-Maxwellian distribution. Here, the measured ITS spectrum transformed into a 1D velocity distribution and the probability of finding a particle with speed within 0 and given value v is calculated. The differentiation of this probability function is shown to be the normalized electron velocity distribution function. (C) 2003 American Institute of Physics.
Resumo:
We treat the question of existence of common hypercyclic vectors for families of continuous linear operators. It is shown that for any continuous linear operator T on a complex Fréchet space X and a set ? ? R+ × C which is not of zero three-dimensional Lebesgue measure, the family {a T + b I : (a, b) ? ?} has no common hypercyclic vectors. This allows to answer negatively questions raised by Godefroy and Shapiro and by Aron. We also prove a sufficient condition for a family of scalar multiples of a given operator on a complex Fréchet space to have a common hypercyclic vector. It allows to show that if D = {z ? C : | z | < 1} and f ? H8 (D) is non-constant, then the family {z Mf{star operator} : b- 1 < | z | < a- 1} has a common hypercyclic vector, where Mf : H2 (D) ? H2 (D), Mf f = f f, a = inf {| f (z) | : z ? D} and b = sup {| f (z) | : | z | ? D}, providing an affirmative answer to a question by Bayart and Grivaux. Finally, extending a result of Costakis and Sambarino, we prove that the family {a Tb : a, b ? C {set minus} {0}} has a common hypercyclic vector, where Tb f (z) = f (z - b) acts on the Fréchet space H (C) of entire functions on one complex variable.
Resumo:
For Variable Stiffness (VS) composites with steered curvilinear tow paths, the fiber orientation angle varies continuously throughout the laminate, and is not required to be straight, parallel and uniform within each ply as in conventional composite laminates. Hence, the thermal properties (conduction), as well as the structural stiffness and strength, vary as functions of location in the laminate, and the associated composite structure is often called a “variable stiffness” composite structure. The steered fibers lead not only to the alteration of mechanical load paths, but also to the alteration of thermal paths that may
result in favorable temperature distributions within the laminate and improve the laminate performance. Evaluation of VS laminate performance under thermal loading is the focus of this chapter. Thermal performance evaluations require experimental and numerical analysis of VS laminates under different processing and loading conditions. One of the advantages of using composite materials in many applications is the tailoring capability of the laminate,
not only during the design phase but also for manufacturing. Heat transfer through variable conduction and chemical reaction (degree of cure) occurring during manufacturing (curing) plays an important role in the final thermal and mechanical performance, and shape of composite structures.
Resumo:
Two families of membrane enzymes catalyze the initiation of the synthesis of O-antigen lipopolysaccharide. The Salmonella enterica Typhimurium WbaP is a prototypic member of one of these families. We report here the purification and biochemical characterization of the WbaP C-terminal (WbaP(CT)) domain harboring one putative transmembrane helix and a large cytoplasmic tail. An N-terminal thioredoxin fusion greatly improved solubility and stability of WbaP(CT) allowing us to obtain highly purified protein. We demonstrate that WbaP(CT) is sufficient to catalyze the in vitro transfer of galactose (Gal)-1-phosphate from uridine monophosphate (UDP)-Gal to the lipid carrier undecaprenyl monophosphate (Und-P). We optimized the in vitro assay to determine steady-state kinetic parameters with the substrates UDP-Gal and Und-P. Using various purified polyisoprenyl phosphates of increasing length and variable saturation of the isoprene units, we also demonstrate that the purified enzyme functions highly efficiently with Und-P, suggesting that the WbaP(CT) domain contains all the essential motifs to catalyze the synthesis of the Und-P-P-Gal molecule that primes the biosynthesis of bacterial surface glycans.
Resumo:
This paper presents a new strategy, “state-by-state transient screening”, for kinetic characterization of states of a multicomponent catalyst as applied to TAP pulse-response experiments. The key idea is to perform an insignificant chemical perturbation of the catalytic system so that the known essential characteristics of the catalyst (e.g. oxidation degree) do not change during the experiment. Two types of catalytic substances can be distinguished: catalyst state substances, which determine the catalyst state, and catalyst dynamic substances, which are created by the perturbation. The general methodological and theoretical framework for multi-pulse TAP experiments is developed, and the general model for a one-pulse TAP experiment is solved. The primary kinetic characteristics, basic kinetic coefficients, are extracted from diffusion–reaction data and calculated as functions of experimentally measured exit-flow moments without assumptions regarding the detailed kinetic mechanism. The new strategy presented in this paper provides essential information, which can be a basis for developing a detailed reaction mechanism. The theoretical results are illustrated using furan oxidation over a VPO catalyst.
Resumo:
Negative-strand RNA viruses encode a single RNA-dependent RNA polymerase (RdRp) which transcribes and replicates the genome. The open reading frame encoding the RdRp from a virulent wild-type strain of rinderpest virus (RPV) was inserted into an expression plasmid. Sequences encoding enhanced green fluorescent protein (EGFP) were inserted into a variable hinge of the RdRp. The resulting polymerase was autofluorescent, and its activity in the replication/transcription of a synthetic minigenome was reduced. We investigated the potential of using this approach to rationally attenuate a virus by inserting the DNA sequences encoding the modified RdRp into a full-length anti-genome plasmid from which a virulent virus (rRPV(KO)) can be rescued. A recombinant virus, rRPV(KO)L-RRegfpR, which grew at an indistinguishable rate and to an identical titer as rRPV(KO) in vitro, was rescued. Fluorescently tagged polymerase was visible in large cytoplasmic inclusions and beneath the cell membrane. Subcutaneous injection of 10(4) TCID(50) of the rRPV(KO) parental recombinant virus into cattle leads to severe disease symptoms (leukopenia/diarrhea and pyrexia) and death by 9 days postinfection. Animals infected with rRPV(KO)L-RRegfpR exhibited transient leukopenia and mild pyrexia, and the only noticeable clinical signs were moderate reddening of one eye and a slight ocular-nasal discharge. Viruses that expressed the modified polymerase were isolated from peripheral blood lymphocytes and eye swabs. This demonstrates that a virulent morbillivirus can be attenuated in a single step solely by modulating RdRp activity and that there is not necessarily a correlation between virus growth in vitro and in vivo.
Resumo:
Coronaviruses are important pathogens that cause acute respiratory diseases in humans. Replication of the 30-kb positive-strand RNA genome of coronaviruses and discontinuous synthesis of an extensive set of subgenome-length RNAs (transcription) are mediated by the replicase-transcriptase, a barely characterized protein complex that comprises several cellular proteins and up to 16 viral subunits. The coronavirus replicase-transcriptase was recently predicted to contain RNA-processing enzymes that are extremely rare or absent in other RNA viruses. Here, we established and characterized the activity of one of these enzymes, replicative nidoviral uridylate-specific endoribonuclease (NendoU). It is considered a major genetic marker that discriminates nidoviruses (Coronaviridae, Arteriviridae, and Roniviridae) from all other RNA virus families. Bacterially expressed forms of NendoU of severe acute respiratory syndrome coronavirus and human coronavirus 229E were revealed to cleave single-stranded and double-stranded RNA in a Mn2+-dependent manner. Single-stranded RNA was cleaved less specifically and effectively, suggesting that double-stranded RNA is the biologically relevant NendoU substrate. Double-stranded RNA substrates were cleaved upstream and downstream of uridylates at GUU or GU sequences to produce molecules with 2'-3' cyclic phosphate ends. 2'-O-ribose-methylated RNA substrates proved to be resistant to cleavage by NendoU, indicating a functional link with the 2'-O-ribose methyltransferase located adjacent to NendoU in the coronavirus replicative polyprotein. A mutagenesis study verified potential active-site residues and allowed us to inactivate NendoU in the full-length human coronavirus 229E clone. Substitution of D6408 by Ala was shown to abolish viral RNA synthesis, demonstrating that NendoU has critical functions in viral replication and transcription.
Resumo:
Wideband far infrared (FIR) spectra of complex permittivity e(p) of ice are calculated in terms of a simple analytical theory based on the method of dipolar autocorrelation functions. The molecular model represents a revision of the model recently presented for liquid water in Adv. Chem. Phys. 127 (2003) 65. A composite two-fractional model is proposed. The model is characterised by three phenomenological potential wells corresponding to the three FIR bands observed in ice. The first fraction comprises dipoles reorienting in a rather narrow and deep hat-like well; these dipoles generate the librational band centred at the frequency approximate to 880 cm(-1). The second fraction comprises elastically interacting particles; they generate two nearby bands placed around frequency 200 cm(-1). For description of one of these bands the harmonic oscillator (HO) model is used, in which translational oscillations of two charged molecules along the H-bond are considered. The other band is produced by the H-bond stretch, which governs hindered rotation of a rigid dipole. Such a motion and its dielectric response are described in terms of a new cut parabolic (CP) model applicable for any vibration amplitude. The composite hat-HO-CP model results in a smooth epsilon(nu) ice spectrum, which does not resemble the noise-like spectra of ice met in the known literature. The proposed theory satisfactorily agrees with the experimental ice spectrum measured at - 7 degrees C. The calculated longitudinal optic-transverse optic (LO-TO) splitting occurring at approximate to 250 cm(-1) qualitatively agrees with the measured data. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper explores the nature of public acceptance of wind farms by investigating the discourses of support and objection to a proposed offshore scheme. It reviews research into opposition to wind farms, noting previous criticisms that this has tended to provide descriptive rather than explanatory insights and as a result, has not effectively informed the policy debate. One explanation is that much of this research has been conceived within an unreflective positivist research frame, which is inadequate in dealing with the subjectivity and value-basis of public acceptance of wind farm development. The paper then takes a case study of an offshore wind farm proposal in Northern Ireland and applies Q-Methodology to identify the dominant discourse of support and objection. It is argued that this provides new insights into the nature of wind farm conflicts, points to a number or recommendations for policy functions of an example of how this methodology can act as a potential bridge between positivist and post-positivist approaches to policy analysis.
Resumo:
The ionic nature of ionic liquids (ILs) results in a unique combination of intrinsic properties that produces increasing interest in the research of these fluids as environmentally friendly "neoteric" solvents. One of the main research fields is their exploitation as solvents for liquid-liquid extractions, but although ILs cannot vaporize leading to air pollution, they present non-negligible miscibility with water that may be the cause of some environmental aquatic risks. It is thus important to know the mutual solubilities between ILs and water before their industrial applications. In this work, the mutual solubilities of hydrophobic yet hygroscopic imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ILs in combination with the anions bis(trifluoromethylsulfonyl)imide, hexafluorophosphate, and tricyanomethane with water were measured between 288.15 and 318.15 K. The effect of the ILs structural combinations, as well as the influence of several factors, namely cation side alkyl chain length, the number of cation substitutions, the cation family, and the anion identity in these mutual solubilities are analyzed and discussed. The hydrophobicity of the anions increases in the order [C(CN)3] <[PF6] <[Tf2N] while the hydrophobicity of the cations increases from [Cnmim] <[Cnmpy] [Cnmpyr] <[Cnmpip] and with the alkyl chain length increase. From experimental measurements of the temperature dependence of ionic liquid solubilities in water, the thermodynamic molar functions of solution, such as Gibbs energy, enthalpy, and entropy at infinite dilution were determined, showing that the solubility of these ILs in water is entropically driven and that the anion solvation at the IL-rich phase controls their solubilities in water. The COSMO-RS, a predictive method based on unimolecular quantum chemistry calculations, was also evaluated for the description of the water-IL binary systems studied, where it showed to be capable of providing an acceptable qualitative agreement with the experimental data.
Resumo:
We provide a sufficient condition of analyticity of infinitely differentiable eigenfunctions of operators of the form Uf(x) = integral a(x, y) f(b( x, y)) mu(dy) acting on functions f: [u, v] --> C ( evolution operators of one-dimensional dynamical systems and Markov processes have this form). We estimate from below the region of analyticity of the eigenfunctions and apply these results for studying the spectral properties of the Frobenius-Perron operator of the continuous fraction Gauss map. We prove that any infinitely differentiable eigenfunction f of this Frobenius-Perron operator, corresponding to a non-zero eigenvalue admits a (unique) analytic extension to the set C\(-infinity, 1]. Analyzing the spectrum of the Frobenius Perron operator in spaces of smooth functions, we extend significantly the domain of validity of the Mayer and Ropstorff asymptotic formula for the decay of correlations of the Gauss map.
Resumo:
In many passerine species, males sing more than one distinct song type. Commonly, songs are assigned to different song types or song categories based on phonological and syntactical dissimilarities. However, temporal aspects, such as song length and song rate, also need to be considered to understand the possible functions of different songs. Common nightingales (Luscinia megarhynchos) have large vocal repertoires of different song types but their songs additionally can be grouped into two distinct categories (particular groups of song types): whistle songs and nonwhistle songs. Whistle songs are hypothesised to be important to attract migrating females. We studied temporal properties of whistle songs and nonwhistle songs and examined the relationship between those song parameters and song output parameters, such as song rate and song length. To investigate how song parameters vary among males, we calculated the coefficients of variation for different song traits. We found that the variation in the proportion of whistle songs was significantly higher among males than variation in other song parameters. Furthermore, the proportion of whistle songs was negatively correlated with other sona output patterns. These findings suggest that the production of whistle songs might be constrained and/or that whistle songs and their succeeding pauses may act as a functional unit in communication.