33 resultados para Sands


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A late Pleistocene vegetation record is presented, using multi-proxy analysis from three palaeochannels in the northern (Bario) and southern (Pa'Dalih) Kelabit Highlands of Sarawak, Malaysian Borneo. Before 50 000 cal a BP and until approximate to 47 700 cal a BP [marine isotope stage 3 (MIS3)], two of the sites were probably being influenced by energetic fluvial deposition, possibly associated with strong seasonality. Fluvial activity declines between 47 700 and 30 000 cal a BP (MIS3), and may be associated with a reduction in seasonality with overall stability in precipitation. The pollen record between 47 700 and 30 000 cal a BP generally shows much higher representation of upper-montane taxa compared with the Holocene, indicating often significantly reduced temperatures. After 35 000-30 000 cal a BP and until the mid-Holocene, hiatuses appear in two of the records, which could be linked to fluvial down-cutting during the late/mid Holocene. Despite the jump in ages, a pronounced representation of Ericaceae and upper-montane taxa, represented both at Bario and at Pa'Dalih, corresponds to a further lowering of temperatures during the Last Glacial Maximum (MIS2). Thick charcoal bands in the PDH 210 record also suggest periods of extreme aridity between 30 200 and 12 700 cal a BP. This is followed by energetic fluvial deposition of sands and gravels, and may reflect a significant increase in seasonality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent analyses of sediment samples from "black mat" sites in South America and Europe support previous interpretations of an ET impact event that reversed the Late Glacial demise of LGM ice during the Bølling Allerød warming, resulting in a resurgence of ice termed the Younger Dryas (YD) cooling episode. The breakup or impact of a cosmic vehicle at the YD boundary coincides with the onset of a 1-kyr long interval of glacial resurgence, one of the most studied events of the Late Pleistocene. New analytical databases reveal a corpus of data indicating that the cosmic impact was a real event, most possibly a cosmic airburst from Earth's encounter with the Taurid Complex comet or unknown asteroid, an event that led to cosmic fragments exploding interhemispherically over widely dispersed areas, including the northern Andes of Venezuela and the Alps on the Italian/French frontier. While the databases in the two areas differ somewhat, the overall interpretation is that microtextural evidence in weathering rinds and in sands of associated paleosols and glaciofluvial deposits carry undeniable attributes of melted glassy carbon and Fe spherules, planar deformation features, shock-melted and contorted quartz, occasional transition and platinum metals, and brecciated and impacted minerals of diverse lithologies. In concert with other black mat localities in the Western USA, the Netherlands, coastal France, Syria, Central Asia, Peru, Argentina and Mexico, it appears that a widespread cosmic impact by an asteroid or comet is responsible for deposition of the black mat at the onset of the YD glacial event. Whether or not the impact caused a 1-kyr interval of glacial climate depends upon whether or not the Earth had multiple centuries-long episodic encounters with the Taurid Complex or asteroid remnants; impact-related changes in microclimates sustained climatic forcing sufficient to maintain positive mass balances in the reformed ice; and/or inertia in the Atlantic thermohaline circulation system persisted for 1kyr. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacterial community composition and biomass abundance from a depositional mud belt in the western Irish Sea and regional sands were investigated by phospholipid ester-linked fatty acid profiling, denaturing gradient gel electrophoresis and barcoded pyrosequencing of 16S rRNA genes. The study area varied by water depth (12-111 m), organic carbon content (0.09-1.57% TOC), grain size, hydrographic regime (well-mixed vs. stratified), and water column phytodetrital input (represented by algal polyunsaturated PLFA). The relative abundance of bacterial-derived PLFA (sum of methyl-branched, cyclopropyl and odd-carbon number PLFA) was positively correlated with fine-grained sediment, and was highest in the depositional mud belt. A strong association between bacterial biomass and eukaryote primary production was suggested based on observed positive correlations with total nitrogen and algal polyunsaturated fatty acids. In addition, 16S rRNA genes affiliated to the classes Clostridia and Flavobacteria represented a major proportion of total 16S rRNA gene sequences. This suggests that benthic bacterial communities are also important degraders of phytodetrital organic matter and closely coupled to water column productivity in the western Irish Sea.