63 resultados para SUSCEPTIBILITY GENE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ß-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a biological and positional candidate gene for Alzheimer’s disease (AD). BACE1 is a protease that catalyses APP cleavage at the ß-secretase site. We evaluated all common and putatively functional polymorphisms in the genomic region encompassing BACE1 for an association with AD, and for functional effects on platelet ß-secretase activity. Tag SNPs (n = 10) derived from phase II of the International HapMap Project, and a nonsynonymous variant, were successfully genotyped in 901 Caucasian individuals from Northern Ireland using Sequenom iPLEX and TaqMan technologies. APOE genotyping was performed by PCR-RFLP. Platelet membrane ß-secretase activity was assayed in a subset of individuals (n = 311). Hardy–Weinberg equilibrium was observed for all variants. Evidence for an association with AD was observed with multi-marker haplotype analyses (P = 0.01), and with rs676134 when stratified for APOE genotype (P = 0.02), however adjusting for multiple testing negated the evidence for association of this variant with AD. ?2 analysis of genotype and allele frequencies in cases versus controls for individual SNPs revealed no evidence for association (5% level). No genetic factors were observed that significantly influenced platelet membrane ß-secretase activity. We have selected an appropriate subset of variants suitable for comprehensive genetic investigation of the BACE1 gene. Our results suggest that common BACE1 polymorphisms and putatively functional variants have no significant influence on genetic susceptibility to AD, or platelet ß-secretase activity, in this Caucasian Northern Irish population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gremlin, a cell growth and differentiation factor, promotes the development of diabetic nephropathy in animal models, but whether GREM1 gene variants associate with diabetic nephropathy is unknown. We comprehensively screened the 5' upstream region (including the predicted promoter), all exons, intron-exon boundaries, complete untranslated regions, and the 3' region downstream of the GREM1 gene. We identified 31 unique variants, including 24 with a minor allele frequency exceeding 5%, and 9 haplotype-tagging single nucleotide polymorphisms (htSNPs). We selected one additional variant that we predicted to alter transcription factor binding. We genotyped 709 individuals with type 1 diabetes of whom 267 had nephropathy (cases) and 442 had no evidence of kidney disease (controls). Three individual SNPs significantly associated with nephropathy at the 5% level, and two remained significant after adjustment for multiple testing. Subsequently, we genotyped a replicate population comprising 597 cases and 502 controls: this population supported an association with one of the SNPs (rs1129456; P = 0.0003). Combined analysis, adjusted for recruitment center (n = 8), suggested that the T allele conferred greater odds of nephropathy (OR 1.69; 95% CI 1.36 to 2.11). In summary, the GREM1 variant rs1129456 associates with diabetic nephropathy, perhaps explaining some of the genetic susceptibility to this condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13 loci newly associated with CAD at P < 5 x 10(-8) and confirmed the association of 10 of 12 previously reported CAD loci. The 13 new loci showed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6% to 17% increase in the risk of CAD per allele. Notably, only three of the new loci showed significant association with traditional CAD risk factors and the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the new CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. Keratoconus is a progressive disorder of the cornea that can lead to severe visual impairment or blindness. Although several genomic regions have been linked to rare familial forms of keratoconus, no genes have yet been definitively identified for common forms of the disease. Methods. Two genome-wide association scans were undertaken in parallel. The first used pooled DNA from an Australian cohort, followed by typing of top-ranked single-nucleotide polymorphisms (SNPs) in individual DNA samples. The second was conducted in individually genotyped patients, and controls from the USA. Tag SNPs around the hepatocyte growth factor (HGF) gene were typed in three additional replication cohorts. Serum levels of HGF protein in normal individuals were assessed with ELISA and correlated with genotype. Results. The only SNP observed to be associated in both the pooled discovery and primary replication cohort was rs1014091, located upstream of the HGF gene. The nearby SNP rs3735520 was found to be associated in the individually typed discovery cohort (P = 6.1 × 10 ). Genotyping of tag SNPs around HGF revealed association at rs3735520 and rs17501108/rs1014091 in four of the five cohorts. Meta-analysis of all five datasets together yielded suggestive P values for rs3735520 (P = 9.9 × 10 ) and rs17501108 (P = 9.9 × 10 ). In addition, SNP rs3735520 was found to be associated with serum HGF level in normal individuals (P = 0.036). Conclusions. Taken together, these results implicate genetic variation at the HGF locus with keratoconus susceptibility. © 2011 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive infection caused by Neisseria meningitidis is a worldwide public health problem. Previous reports have indicated that carriage of common ‘defective’ structural polymorphisms of the host mannose-binding lectin gene (MBL2) greatly increases an individual’s risk of developing the disease. We report the largest case–control study so far to investigate the effect of these polymorphisms in meningococcal disease (296 PCR-positive cases and 5196 population controls, all of European ancestry) and demonstrate that no change in risk is associated with the polymorphisms overall or in any age-defined subgroup. This finding contrasts with two smaller studies that reported an increase in risk. A systematic review of all studies of MBL2 polymorphisms in people of European ancestry published since 1999, including 24 693 individuals, revealed a population frequency of the combined ‘defective’MBL2 allele of 0.230 (95% confidence limits: 0.226–0.234). The past reported associations of increased risk of meningococcal disease were because of low ‘defective’ allele frequencies in their study control populations (0.13 and 0.04) that indicate systematic problems with the studies. The data from our study and all other available evidence indicate that MBL2 structural polymorphisms do not predispose children or adults to invasive meningococcal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AbstractInvasive infection caused by Neisseria meningitidis is a worldwide public health problem. Previous reports have indicated that carriage of common 'defective' structural polymorphisms of the host mannose-binding lectin gene (MBL2) greatly increases an individual's risk of developing the disease. We report the largest case-control study so far to investigate the effect of these polymorphisms in meningococcal disease (296 PCR-positive cases and 5196 population controls, all of European ancestry) and demonstrate that no change in risk is associated with the polymorphisms overall or in any age-defined subgroup. This finding contrasts with two smaller studies that reported an increase in risk. A systematic review of all studies of MBL2 polymorphisms in people of European ancestry published since 1999, including 24 693 individuals, revealed a population frequency of the combined 'defective'MBL2 allele of 0.230 (95% confidence limits: 0.226-0.234). The past reported associations of increased risk of meningococcal disease were because of low 'defective' allele frequencies in their study control populations (0.13 and 0.04) that indicate systematic problems with the studies. The data from our study and all other available evidence indicate that MBL2 structural polymorphisms do not predispose children or adults to invasive meningococcal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Parental type 2 diabetes mellitus increases the risk of diabetic nephropathy in offspring with type 1 diabetes mellitus. Several single nucleotide polymorphisms (SNPs) that predispose to type 2 diabetes mellitus have recently been identified. It is, however, not known whether such SNPs also confer susceptibility to diabetic nephropathy in patients with type 1 diabetes mellitus. METHODS: We genotyped nine SNPs associated with type 2 diabetes mellitus in genome-wide association studies in the Finnish population, and tested for their association with diabetic nephropathy as well as with severe retinopathy and cardiovascular disease in 2,963 patients with type 1 diabetes mellitus. Replication of significant SNPs was sought in 2,980 patients from three other cohorts. RESULTS: In the discovery cohort, rs10811661 near gene CDKN2A/B was associated with diabetic nephropathy. The association remained after robust Bonferroni correction for the total number of tests performed in this study (OR 1.33 [95% CI 1.14, 1.56], p?=?0.00045, p (36tests)?=?0.016). In the meta-analysis, the combined result for diabetic nephropathy was significant, with a fixed effects p value of 0.011 (OR 1.15 [95% CI 1.02, 1.29]). The association was particularly strong when patients with end-stage renal disease were compared with controls (OR 1.35 [95% CI 1.13, 1.60], p?=?0.00038). The same SNP was also associated with severe retinopathy (OR 1.37 [95% CI 1.10, 1.69] p?=?0.0040), but the association did not remain after Bonferroni correction (p (36tests)?=?0.14). None of the other selected SNPs was associated with nephropathy, severe retinopathy or cardiovascular disease. CONCLUSIONS/INTERPRETATION: A SNP predisposing to type 2 diabetes mellitus, rs10811661 near CDKN2A/B, is associated with diabetic nephropathy in patients with type 1 diabetes mellitus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burkholderia cenocepacia is a member of the Burkholderia cepacia complex (Bcc), a group of Gram-negative opportunistic pathogens that cause severe lung infections in patients with cystic fibrosis and display extreme intrinsic resistance to antibiotics including antimicrobial peptides. B. cenocepacia BCAL2157 encodes a protein homologous to SuhB, an inositol-1-monophosphatase from Escherichia coli, which was suggested to participate in posttranscriptional control of gene expression. In this work we show that a deletion of the suhB-like gene in B. cenocepacia (?suhBBc) was associated with pleiotropic phenotypes. The ?suhBBc mutant had a growth defect manifested by an almost 2-fold increase in the generation time relative to the parental strain. The mutant also had a general defect in protein secretion, motility and biofilm formation. Further analysis of the Type-2 and the Type-6 secretion systems activities revealed that these secretion systems were inactive in the ?suhBBc mutant. In addition, the mutant exhibited increased susceptibility to polymyxin B but not to aminoglycosides like gentamicin and kanamycin. Together, our results demonstrate that suhBBc deletion compromises general protein secretion including the activity of T2SS and T6SS, and affects polymyxin B resistance, motility, and biofilm formation. The pleiotropic effects observed upon suhBBc deletion demonstrate that suhBBc plays a critical role in the physiology of B. cenocepacia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the role of the tolQ gene in the import of cloacin DF13 across the outer membrane of Escherichia coli strains expressing the IutA receptor. The IutA outer-membrane protein is the receptor for the siderophore ferric aerobactin and also binds cloacin DF13, a bacteriocin produced by strains of Enterobacter aerogenes. In this report we present evidence that tolQ is required for the internalization of cloacin DF13 upon binding to IutA but it is not involved in the transport of ferric aerobactin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have cloned chromosomal genes mediating the aerobactin iron transport system from the enteroinvasive strain Escherichia coli 978-77. The physical map of the region spanning the siderophore biosynthesis genes and the upstream portion of the receptor gene in strain 978-77-derived clones was identical to the corresponding regions in pColV-K30, while the downstream portion was different. Recombinant plasmids derived from strain 978-77 encoded a 76-kDa outer membrane protein, in contrast to the 74-kDa polypeptide encoded by similar clones derived from pColV-K30. No differences were found in the uptake of ferric aerobactin mediated by either the 76-kDa- or the 74-kDa-encoding plasmids. In contrast, cells containing the 76-kDa-encoding plasmids showed a 16-fold decrease in susceptibility to cloacin compared with cells harboring the 74-kDa-encoding plasmids. Two classes of chimeric aerobactin receptor genes were constructed by exchanging sequences corresponding to the downstream portion from the aerobactin receptor gene of both systems. The pColV-K30-978-77 chimeric gene encoded a 76-kDa outer membrane protein which mediated a low level of cloacin susceptibility, whereas the 978-77-pColV-K30 type encoded a protein of 74 kDa determining a level of cloacin susceptibility identical to that mediated by pColV-K30.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the association of genetic polymorphisms of the interleukin-18 (IL-18) pathway to Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Most cases of EAC arise in a background of reflux-induced BE. Genetic influences in this pathway are poorly understood. IL-18 is a multifunctional cytokine implicated in anti-tumor immunity. A number of polymorphisms of the IL-18 and IL-18 receptor-accessory protein (IL-18RAP) genes have been reported to alter gene expression and have recently been linked to inflammatory processes and various tumors, but have not heretofore been studied in BE and EAC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ~2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P?=?1.2×10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P?=?2.0×10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-ß1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P?=?2.1×10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer's disease (AD) and age-related macular degeneration (AMD) are both neurodegenerative disorders which share common pathological and biochemical features of the complement pathway. The aim of this study was to investigate whether there is an association between well replicated AMD genetic risk factors and AD. A large cohort of AD (n = 3898) patients and controls were genotyped for single nucleotide polymorphisms (SNPs) in the complement factor H (CFH), the Age-related maculopathy susceptibility protein 2 (ARMS2) the complement component 2 (C2), the complement factor B (CFB), and the complement component 3 (C3) genes. While significant but modest associations were identified between the complement factor H, the age-related maculopathy susceptibility protein 2, and the complement component 3 single nucleotide polymorphisms and AD, these were different in direction or genetic model to that observed in AMD. In addition the multilocus genetic model that predicts around a half of the sibling risk for AMD does not predict risk for AD. Our study provides further support to the hypothesis that while activation of the alternative complement pathway is central to AMD pathogenesis, it is less involved in AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dysfunction of lipid-metabolizing proteins is implicated in the pathogenesis of coronary artery disease. Single nucleotide polymorphisms in genes that encode sterol regulatory binding protein-la, adenosine triphosphate binding cassette-A1, hepatic lipase, lipoprotein lipase, and cholesteryl ester transfer protein were assessed as potential markers of disease susceptibility in a family-based study of 1,012 patients from 386 families. Association between single nucleotide polymorphisms and coronary artery disease was tested by the combined transmission disequilibrium test/sib transmission disequilibrium test and pedigree disequilibrium test. After Bonferroni's correction, the pedigree disequilibrium test demonstrated significant excess transmission (p < 0.0083) to affected patients of the hepatic lipase -514 T allele, which suggests that this may constitute a novel disease-susceptibility locus. (c) 2005 Elsevier Inc. All rights reserved.