136 resultados para SUDDEN CARDIAC DEATH


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nhlh1 is a basic helix-loop-helix transcription factor whose expression is restricted to the nervous system and which may play a role in neuronal differentiation. To directly study Nhlh1 function, we generated null mice. Homozygous mutant mice were predisposed to premature, adult-onset, unexpected death. Electrocardiograms revealed decreased total heart rate variability, stress-induced arrhythmia, and impaired baroreceptor sensitivity. This predisposition to arrhythmia is a likely cause of the observed death in the mutant mice. Heterozygosity for the closely related transcription factor Nhlh2 increased the severity of the Nhlh1-null phenotype. No signs of primary cardiac structural or conduction abnormalities could be detected upon necropsy of the null mice. The pattern of altered heart rhythm observed in basal and experimental conditions (stress and pharmacologically induced) suggests that a deficient parasympathetic tone may contribute to the arrhythmia in the Nhlh1-null mouse. The expression of Nhlh1 in the developing brain stem and in the vagal nuclei in the wild-type mouse further supports this hypothesis. The Nhlh1 mutant mouse may thus provide a model to investigate the contribution of the autonomic nervous system to arrhythmogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has recently attracted attention as a potential therapeutic agent in the treatment of cancer. We assessed the roles of p53, TRAIL receptors, and cellular Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (c-FLIP) in regulating the cytotoxic effects of recombinant TRAIL (rTRAIL) alone and in combination with chemotherapy [5-fluorouracil (5-FU), oxaliplatin, and irinotecan] in a panel of colon cancer cell lines. Using clonogenic survival and flow cytometric analyses, we showed that chemotherapy sensitized p53 wild-type, mutant, and null cell lines to TRAIL-mediated apoptosis. Although chemotherapy treatment did not modulate mRNA or cell surface expression of the TRAIL receptors death receptor 4, death receptor 5, decoy receptor 1, or decoy receptor 2, it was found to down-regulate expression of the caspase-8 inhibitor, c-FLIP. Stable overexpression of the long c-FLIP splice form but not the short form was found to inhibit chemotherapy/rTRAIL-induced apoptosis. Furthermore, siRNA-mediated down-regulation of c-FLIP, particularly the long form, was found to sensitize colon cancer cells to rTRAIL-induced apoptosis. In addition, treatment of a 5-FU-resistant cell line with 5-FU down-regulated c-FLIP expression and sensitized the chemotherapy-resistant cell line to rTRAIL. We conclude that TRAIL-targeted therapies may be used to enhance conventional chemotherapy regimens in colon cancer regardless of tumor p53 status. Furthermore, inhibition of c-FLIP may be a vital accessory strategy for the optimal use of TRAIL-targeted therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

c-FLIP inhibits caspase 8 activation and apoptosis mediated by death receptors such as Fas and DR5. We studied the effect of c-FLIP on the apoptotic response to chemotherapies used in colorectal cancer (CRC) (5-fluorouracil, oxaliplatin and irinotecan). Simultaneous downregulation of both c-FLIP splice forms c-FLIP(L) and c-FLIP(S) with siRNA synergistically enhanced chemotherapy-induced apoptosis in p53 wild-type (HCT116p53(+/+), RKO), null (HCT116p53(-/-)) and mutant (H630) CRC cell lines. Furthermore, overexpression of c-FLIP(L), but not c-FLIP(S), potently inhibited apoptosis induced by chemotherapy in HCT116p53(+/+) cells, suggesting that c-FLIP(L) was the more important splice form in mediating chemoresistance. In support of this, siRNA specifically targeted against c-FLIP(L) synergistically enhanced chemotherapy-induced apoptosis in a manner similar to the siRNA targeted against both splice forms. Inhibition of caspase 8 blocked the enhanced apoptosis induced by c-FLIP-targeted (FT) siRNA and chemotherapy. Furthermore, we found that downregulating cell surface DR5, but not Fas, also inhibited apoptosis induced by FT siRNA and chemotherapy. Interestingly, these effects were not dependent on activation of DR5 by its ligand TRAIL. These results indicate that c-FLIP inhibits TRAIL-independent, DR5- and caspase 8-dependent apoptosis in response to chemotherapy in CRC cells. Moreover, targeting c-FLIP in combination with existing chemotherapies may have therapeutic potential for the treatment of CRC.