33 resultados para STREPTOCOCCUS-PYOGENES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The oral cavity is an ideal environment for colonisation by micro-organisms. A first line of defence against microbial infection is the secretion of broad spectrum host defence peptides (HDPs). In the current climate of antibiotic resistance, exploiting naturally occurring HDPs or synthetic derivatives (mimetics) to combat infection is particularly appealing. The human cathelicidin, LL-37 is one such HDP expressed ubiquitously by epithelial cells and neutrophils. LL-37 exhibits the ability to bind lipopolysaccharide (LPS) and displays broad spectrum activity against a wide range of bacteria. The current study focuses on truncation of LL-37 and defining the antimicrobial and LPS binding activity of the resultant mimetics. Objectives: To assess the antimicrobial and LPS binding activity of LL-37 and three truncated mimetics (KE-18, EF-14 and KR-12). Methods: Peptides were synthesised in-house by Fmoc solid phase peptide synthesis or obtained commercially. Antimicrobial activity was determined using a radial diffusion assay and ability to bind LPS was determined by indirect ELISA. Results: LL-37 and mimetics displayed antimicrobial activity against Streptococcus mutans and Enterococcus Faecalis. KE-18 and KR-12 were shown to possess antimicrobial activity against both pathogens whereas EF-14 was the least antimicrobial. In terms of LPS binding, KE-18 and KR-12 were both effective whereas EF-14 showed the least activity of the three mimetics. Conclusion: Truncation of LL-37 can yield peptides which retain antimicrobial activities and have the ability to bind LPS. Interestingly in some cases the truncation of LL-37 produced mimetics with greater potency than the parent molecule in terms of antimicrobial activity and LPS binding. This work was funded by DEL and the Diabetes Wellness Foundation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Many neuropeptides are similar in size, amino acid composition and charge to antimicrobial peptides. It is therefore possible that the nervous system employs neuropeptides as antimicrobial agents by delivering them rapidly and precisely to innervated sites such as the dental pulp. Objectives: The aim of this study was to determine whether the neuropeptides substance P (SP), neurokinin A (NKA), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), which we have previously shown to be present in dental pulp, displayed antimicrobial activity against the cariogenic bacterium Streptococcus mutans and the endodontic bacterium Enterococcus faecalis. Methods: Neuropeptides were purchased from Bachem and utilised in antibacterial assays using a previously described ultra sensitive radial diffusion method. Results: Antimicrobial activity was identified as clear zones around neuropeptide-containing wells. NPY was found to exhibit antimicrobial against both Streptococcus mutans and Enterococcus faecalis. SP and VIP were shown to exhibit antimicrobial activity against Streptococcus mutans only. The neuropeptides NKA and CGRP did not show antimicrobial activity against either micro-organism. Conclusion: This study is the first to describe an antimicrobial role for neuropeptides in pulp biology. The antimicrobial actions of neuropeptides contribute a novel aspect to pulpal defence against cariogenic and endodontic bacteria worthy of further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Cationic, α- helical antimicrobial peptides found in skin secretions of the African Volcano Frog, Xenopus amieti include magainin-AM1, peptide glycine-leucine-amide (PGLa-AM1) and caerulein-precursor fragment (CPF-AM1). Objectives: The principle objective of this study was to determine the antibacterial activity of these peptides against a range of aerobic and anaerobic and oral pathogens. Secondary objectives were to establish their lipopolysaccharide (LPS) binding activity and determine potential cytotoxic effects against host cells. Methods: Magainin-AM1, PGLa-AM1 and CPF-AM1 were assessed for their antimicrobial activity against Fusobacteriim nucleatum, Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis and Streptococcus milleri using a double layer radial diffusion assay. The propensity for each peptide to bind LPS was determined using an indirect ELISA. The potential cytotoxicity of the peptides against human pulp cells in vitro was determined using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Magainin-AM1, PGLa-AM1 and CPF-AM1 displayed potent antimicrobial activity against all the bacterial pathogens tested, with Magainin-AM1 being the least effective. PGLa-AM1 was most potent against S. mutans, with a minimum inhibitory concentration (MIC) of 1.2 μM. PGLa-AM1 and CPF-AM1 were both very active against F. nucleatum with MIC values of 1.5 μM and 2.2 μM respectively. The LPS binding ability of the peptides varied depending on the bacterial source of the LPS, with PGLa-AM-1 being the most effective at binding LPS. Cytotoxicity studies revealed all three peptides lacked cytotoxic effects at the concentrations tested. Conclusions: The peptides magainin-AM1, PGLa-AM1 and CPF-AM1 from the African Volcano Frog, Xenopus amieti displayed potent antimicrobial activity and LPS binding activity against a range of oral pathogens with little cytotoxic effects. These peptides merit further studies for the development of novel therapeutics to combat common oral bacterial infections.