44 resultados para STOKES-RAMAN SCATTERING
Resumo:
Raman satellites have been observed in the scattering of a Nd:YAG laser (532 nm) from a laser-ablated Mg plasma plume. We identify them as originating from transitions between the fine-structure components of the metastable 3s3p P-3(0,1,2) level of Mg. We have calculated the cross sections for Raman and Rayleigh scattering from the metastable state. Comparison of the expected ratio of the satellites to the Rayleigh peak indicates the changing population fraction of the metastable states in the plume.
Resumo:
Raman microscopy, based upon the inelastic scattering (Raman) of light by molecular species, has been applied as a specific structural probe in a wide range of biomedical samples. The purpose of the present investigation was to assess the potential of the technique for spectral characterization of the porcine outer retina derived from the area centralis, which contains the highest proportion of cone:rod cell ratio in the pig retina. METHODS: Retinal cross-sections, immersion-fixed in 4% (w/v) PFA and cryoprotected, were placed on salinized slides and air-dried prior to direct Raman microscopic analysis at three excitation wavelengths, 785 nm, 633 nm, and 514 nm. RESULTS: Raman spectra of each of the photoreceptor inner and outer segments (PIS, POS) and of the outer nuclear layer (ONL) of the retina acquired at 785 nm were dominated by vibrational features characteristic of proteins and lipids. There was a clear difference between the inner and outer domains in the spectroscopic regions, amide I and III, known to be sensitive to protein conformation. The spectra recorded with 633 nm excitation mirrored those observed at 785 nm excitation for the amide I region, but with an additional pattern of bands in the spectra of the PIS region, attributed to cytochrome c. The same features were even more enhanced in spectra recorded with 514 nm excitation. A significant nucleotide contribution was observed in the spectra recorded for the ONL at all three excitation wavelengths. A Raman map was constructed of the major spectral components found in the retinal outer segments, as predicted by principal component analysis of the data acquired using 633 nm excitation. Comparison of the Raman map with its histological counterpart revealed a strong correlation between the two images. CONCLUSIONS: It has been demonstrated that Raman spectroscopy offers a unique insight into the biochemical composition of the light-sensing cells of the retina following the application of standard histological protocols. The present study points to the considerable promise of Raman microscopy as a component-specific probe of retinal tissue.
Resumo:
Alpha-tocopherol (aT), the predominant form of vitamin E in mammals, is thought to prevent oxidation of polyunsaturated fatty acids. In the lung, aT is perceived to be accumulated in alveolar type II cells and secreted together with surfactant into the epithelial lining fluid. Conventionally, determination of aT and related compounds requires extraction with organic solvents. This study describes a new method to determine and image the distribution of aT and related compounds within cells and tissue sections using the light-scattering technique of Raman microscopy to enable high spatial as well as spectral resolution. This study compared the nondestructive analysis by Raman microscopy of vitamin E, in particular aT, in biological samples with data obtained using conventional HPLC analysis. Raman spectra were acquired at spatial resolutions of 2-0.8 microm. Multivariate analysis techniques were used for analyses and construction of corresponding maps showing the distribution of aT, alpha-tocopherol quinone (aTQ), and other constituents (hemes, proteins, DNA, and surfactant lipids). A combination of images enabled identification of colocalized constituents (heme/aTQ and aT/surfactant lipids). Our data demonstrate the ability of Raman microscopy to discriminate between different tocopherols and oxidation products in biological specimens without sample destruction. By enabling the visualization of lipid-protein interactions, Raman microscopy offers a novel method of investigating biological characterization of lipid-soluble compounds, including those that may be embedded in biological membranes such as aT.
Resumo:
We report the formation of highly scattering silver complexes of adenine, deoxyadenosine and 5'-dAMP under alkaline pH conditions in the colloidal silver solutions which are used for surface-enhanced Raman spectroscopy. These complexes, and other pH-dependent phenomena, help to explain the diversity of previously reported adenine SERS spectra. Using conditions which promote complex formation allows nucleotides to be detected at <1 ppm, even in solutions with high salt concentrations.
Resumo:
Raman spectroscopy is a noninvasive, nondestructive tool for capturing multiplexed biochemical information across diverse molecular species including proteins, lipids, DNA, and mineralizations. Based on light scattering from molecules, cells, and tissues, it is possible to detect molecular fingerprints and discriminate between subtly different members of each biochemical class. Raman spectroscopy is ideal for detecting perturbations from the expected molecular structure such as those occurring during senescence and the modification of long-lived proteins by metabolic intermediates as we age. Here, we describe the sample preparation, data acquisition, signal processing, data analysis and interpretation involved in using Raman spectroscopy for detecting age-related protein modifications in complex biological tissues.
Resumo:
Thomson scattering is one of the most powerful diagnostic tools for plasma characterization, and it has been applied to a variety of plasmas. It is a nonintrusive technique, and the interpretation of the signal is relatively simple. However, this method has not been widely applied to low-temperature laser-ablated plasmas. Raman satellites have been observed in the scattering spectrum from a Mg laser-ablated plasma, giving this diagnostic the potential to be also used in density quantification of metastable states in plasmas.
Resumo:
We report on a temperature dependence of the frequency of all the major peaks in the Raman spectra of carbon nanotubes, using different excitation laser powers at the sample. The frequency decreases with increasing temperature for all peaks, and the shifts in Raman frequencies are linear in the temperature of the sample. In comparison, a similar dependence is found in active carbon, but no shift is observed for the highly ordered pyrolytic graphite within the same range of variation in laser power. A lowering of frequency at higher temperature implies an increase in the carbon-carbon distance at higher temperature. The relatively strong temperature dependence in carbon nanotubes and active carbon may be due to the enhanced increase in carbon-carbon distance. This enhancement may originate from the heavy defects and disorder in these materials. (C) 1998 American Institute of Physics. [S0021-8979(98)05219-0].
Resumo:
Fabricated one-dimensional (1D) materials often have abundant structural defects. Experimental observation and numerical calculation indicate that the broken translation symmetry due to structural defects may play a more important role than the quantum confinement effect in the Raman features of optical phonons in polar semiconductor quantum wires such as SiC nanorods, (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Dynamic magnetic properties of arrays of Ni nanorods with a low aspect ratio have been investigated. It has been shown that the spectra of spin-wave resonances localized on nanorods with a low aspect ratio typically feature the presence of zones with high density of states resulting in a characteristic two-peak pattern of Stokes and anti-Stokes lines of magneto-optical (MO) Brillouin light scattering with pronounced Stokes–anti-Stokes (S-AS) asymmetry. A simple theoretical model based on the analysis of the elliptic character of the polarization of the optical wave interacting with a dipole magnetostatic wave has been proposed. It has been shown that the S-AS asymmetry is due entirely to the asymmetry of the MO interaction efficiency with respect to time reversal of the magnetic precession in a magnon.
Resumo:
We report on the investigations of spin wave modes in arrays of densely packed Co nanorods using Brillouin light scattering. We have observed a significant role of spin wave modes along the nanorod axis in contrast to infinite magnetic nanowires. Unusual optical properties featuring an inverted Stokes/anti-Stokes asymmetry of the Brillouin scattering spectra have been observed. The spectrum of spin wave modes in the nanorod array has been calculated and compared with the experiment. Experimental observations are explained in terms of a combined numerical-analytical approach taking into account both the low aspect ratio of individual magnetic nanorods and dipolar magnetic coupling between the nanorods in the array. The optical studies of spin-wave modes in the metamaterials with low aspect ratio nanorods have revealed new magnetic and magneto-optical properties compared to continuous magnetic films or infinite magnetic nanowires. Such magnetic metamaterials are important class of active metamaterials needed for prospective data storage and signal processing applications. (c) 2012 Optical Society of America
Resumo:
We report the investigations of spin wave modes of arrays of Ni and Co nanorods using Brillouin light scattering. We have revealed the significant influence of spin wave modes along the nanorod axis in contrast to infinite magnetic nanowires. Unusual optical properties featuring an inverted Stokes/anti-Stokes asymmetry of the Brillouin scattering spectra have been observed. The spectrum of spin wave modes in the nanorod array has been calculated and compared with the experiment. Experimental observations are explained in terms of a combined numerical-analytical approach taking into account both the low aspect ratio of individual magnetic nanorods and dipolar magnetic coupling between the nanorods in the array. The optical studies of spin-wave modes in nanorod metamaterials with low aspect ratio nanorods have revealed new magnetic and magneto-optical properties compared to continuous magnetic films or infinite magnetic nanowires. Such magnetic artificial materials are important class of active metamaterials needed for prospective data storage and signal processing applications. © 2012 Elsevier B.V.
Resumo:
A simple derivatization methodology is shown to extend the application of surface-enhanced Raman spectroscopy (SERS) to the detection of trace concentration of contaminants in liquid form. Normally in SERS the target analyte species is already present in the molecular form in which it is to be detected and is extracted from solution to occupy sites of enhanced electromagnetic field on the substrate by means of chemisorption or drop-casting and subsequent evaporation of the solvent. However, these methods are very ineffective for the detection of low concentrations of contaminant in liquid form because the target (ionic) species (a) exhibits extremely low occupancy of enhancing surface sites in the bulk liquid environment and (b) coevaporates with the solvent. In this study, the target analyte species (acid) is detected via its solid derivative (salt) offering very significant enhancement of the SERS signal because of preferential deposition of the salt at the enhancing surface but without loss of chemical discrimination. The detection of nitric acid and sulfuric acid is demonstrated down to 100 ppb via reaction with ammonium hydroxide to produce the corresponding ammonium salt. This yields an improvement of ∼4 orders of magnitude in the low-concentration detection limit compared with liquid phase detection.
Resumo:
The energy transfer by stimulated Brillouin backscatter from a long pump pulse (15 ps) to a short seed pulse (1 ps)has been investigated in a proof-of-principle demonstration experiment. The two pulses were both amplified in differentbeamlines of a Nd:glass laser system, had a central wavelength of 1054 nm and a spectral bandwidth of 2 nm, and crossedeach other in an underdense plasma in a counter-propagating geometry, off-set by 10◦. It is shown that the energy transferand the wavelength of the generated Brillouin peak depend on the plasma density, the intensity of the laser pulses, and thecompetition between two-plasmon decay and stimulated Raman scatter instabilities. The highest obtained energy transferfrom pump to probe pulse is 2.5%, at a plasma density of 0.17ncr, and this energy transfer increases significantly withplasma density. Therefore, our results suggest that much higher efficiencies can be obtained when higher densities (above0.25ncr) are used.
Resumo:
Modification of citrate and hydroxylamine reduced Ag colloids with thiocholine bromide, a thiol functionalized quaternary ammonium salt, creates particles where the zeta potential is switched from the normal values of ca. -50 mV to ca. + 50 mV. These colloids are stable but can be aggregated with metal salts in much the same way as the parent colloids. They are excellent SERS substrates for detection of anionic targets since their positive zeta potentials promote adsorption of negatively charged ions. This is important because the vast majority of published SERS studies involve cationic or neutral targets. Moreover, the fact that the modifier is a quaternary ammonium ion means that the negative surface charge is maintained even at alkaline pH. The modified colloids can be used to detect compounds which cannot be detected using conventional negatively-charged citrate or hydroxylamine reduced metal nanoparticles, for example the detection limit was 5.0 x 10(-5) M for perchlorate and