69 resultados para SRS-1d
Resumo:
A eukaryotic cell attaches and spreads on substrates, whether it is the extracellular matrix naturally produced by the cell itself, or artificial materials, such as tissue-engineered scaffolds. Attachment and spreading require the cell to apply forces in the nN range to the substrate via adhesion sites, and these forces are balanced by the elastic response of the substrate. This mechanical interaction is one determinant of cell morphology and, ultimately, cell phenotype. In this paper we use a finite element model of a cell, with a tensegrity structure to model the cytoskeleton of actin filaments and microtubules, to explore the way cells sense the stiffness of the substrate and thereby adapt to it. To support the computational results, an analytical 1D model is developed for comparison. We find that (i) the tensegrity hypothesis of the cytoskeleton is sufficient to explain the matrix-elasticity sensing, (ii) cell sensitivity is not constant but has a bell-shaped distribution over the physiological matrix-elasticity range, and (iii) the position of the sensitivity peak over the matrix-elasticity range depends on the cytoskeletal structure and in particular on the F-actin organisation. Our model suggests that F-actin reorganisation observed in mesenchymal stem cells (MSCs) in response to change of matrix elasticity is a structural-remodelling process that shifts the sensitivity peak towards the new value of matrix elasticity. This finding discloses a potential regulatory role of scaffold stiffness for cell differentiation.
Resumo:
We propose a one-dimensional rice-pile model which connects the 1D BTW sandpile model (Phys. Rev. A 38 (1988) 364) and the Oslo rice-pile model (Phys. Rev. Lett. 77 (1997) 107) in a continuous manner. We found that for a sufficiently large system, there is a sharp transition between the trivial critical behaviour of the 1D BTW model and the self-organized critical (SOC) behaviour. When there is SOC, the model belongs to a known universality class with the avalanche exponent tau = 1.53. (C) 1999 Elsevier Science B.V. All rights reserved.
A Theoretical and Experimental Study of Resonance in a High Performance Engine Intake System: Part 1
Resumo:
The unsteady gas dynamic phenomena in engine intake systems of the type found in racecars have been examined. In particular, the resonant tuning effects, including cylinder-to-cylinder power variations, which can occur as a result of the interaction between an engine and its airbox have been considered. Frequency analysis of the output from a Virtual 4-Stroke 1D engine simulation was used to characterise the forcing function applied by an engine to an airbox. A separate computational frequency sweeping technique, which employed the CFD package FLUENT, was used to determine the natural frequencies of virtual airboxes in isolation from an engine. Using this technique, an airbox with a natural frequency at 75 Hz was designed for a Yamaha R6 4-cylinder motorcycle engine. The existence of an airbox natural frequency at 75 Hz was subsequently confirmed by an experimental frequency sweeping technique carried out on the engine test bed. A coupled 1D/3D analysis which employed the engine simulation package Virtual 4-Stroke and the CFD package FLUENT, was used to model the combined engine and airbox system. The coupled 1D/3D analysis predicted a 75 Hz resonance of the airbox at an engine speed of 9000 rpm. This frequency was the induction frequency for a single cylinder. An airbox was fabricated and tested on the engine. Static pressure was recorded at a grid of points in the airbox as the engine was swept through a speed range of 3000 to 10000 rpm. The measured engine speed corresponding to resonance in the airbox agreed well with the predicted values. There was also good correlation between the amplitude and phase of the pressure traces recorded within the airbox and the 1D/3D predictions.
Resumo:
The authors conducted a study to define the long-term outcomes and risks of stereotactic radiosurgery (SRS) for pediatric arteriovenous malformations (AVMs).
Resumo:
The object of this study was to evaluate the outcomes and risks of repeat stereotactic radiosurgery (SRS) for incompletely obliterated cerebral arteriovenous malformations (AVMs).
Resumo:
Dielectronic recombination was investigated for He+, the simplest ion for which this process is possible. This work was done using the light-ion storage ring and electron cooler at the Indiana University Cyclotron Facility. Resonant recombination yields resulting from 1s +e- --> nln'l' transitions were observed with sufficient resolution (about 1 eV in the center of mass) to isolate and obtain cross sections for the 2s 2p 3P0 and 2p2 1D terms. The measured cross sections, integrated over the DELTAn = 1 2ln'l' states, agree in magnitude with theoretical calculations. Additionally, DELTAn = 2 dielectronic recombination events associated with 3ln'l' intermediate states were observed.
Resumo:
This paper provides an overview of the basic theory underlying 1D unsteady gas dynamics, the computational method developed at Queen’s University Belfast (QUB), the use of CFD as an alternative and some experimental results that demonstrate the techniques used to develop the mathematical models.
Resumo:
Approach:
In-situ passive gradient comparative artificial tracer testing, undertaken using solutes (Uranine and Iodide), Bacteria (E.coli and P.putida) and bacteriophage (H40/1), permitted comparison of the mobility of different sized microorganisms relative to solutes in the sand and gravel aquifer underlying Dornach, Germany.
Tracer breakthrough curves reveal that even though uranine initially arrived at observation wells at the same time as microbiological tracers, maximum relative concentrations were sometimes less than those of microbiological tracers, while solute breakthrough curves proved more disperse.
Monitoring uranine breakthrough with depth suggested tracers arrived in observation wells in discrete 0.5m-1m thick intervals, over the aquifer’s 12m saturated thickness. Nearby exposures of aquifer material suggested that the aquifer consisted of sandy gravels enveloping sequences of open framework (OW) gravel up to 1m thick. Detailed examination of OW units revealed that they contained lenses of silty sand up to 1m long x 30cm thick., while granulometric data suggested that the gravel was two to three orders of magnitude more permeable than the enveloping sandy gravel.
Solute and microorganism tracer responses could not be simulated using conventional advective-dispersive equation solutions employing the same velocity and dispersion terms. By contrast solute tracer responses, modelled using a dual porosity approach for fractured media (DP-1D) corresponded well to observed field data. Simulating microorganism responses using the same transport terms, but no dual porosity term, generated good model fits and explained the higher relative concentration of the bacteria, compared to the non-reactive solute, even with first order removal to account for lower RR. Geologically, model results indicate that the silty units within open framework gravels are accessible to solute tracers, but not to microorganisms.
Importance:
Results highlight the benefits of geological observations developing appropriate conceptual models of solute and micro organism transport and in developing suitable numerical approaches to quantifying microorganism mobility at scales appropriate for the development of groundwater supply (wellhead) protection zones.
Resumo:
BACKGROUND AND PURPOSE:
The purpose of this study was to define the risk of rebleeding after stereotactic radiosurgery (SRS) for hemorrhagic arteriovenous malformations with or without associated intracranial aneurysms.
METHODS:
Between 1987 and 2006, we performed Gamma Knife SRS on 996 patients with brain arteriovenous malformations; 407 patients had sustained an arteriovenous malformation hemorrhage. Sixty-four patients (16%) underwent prior embolization and 84 (21%) underwent prior surgical resection. The median target volume was 2.3 mL (range, 0.1-20.7 mL). The median margin dose was 20 Gy (range, 13.5-27 Gy).
RESULTS:
The overall rate of total obliteration defined by angiography or MRI was 56%, 77%, 80%, and 82% at 3, 4, 5, and 10 years, respectively. Before obliteration, 33 patients (8%) sustained an additional hemorrhage after SRS. The overall annual hemorrhage rate until obliteration after SRS was 1.3%. The presence of a patent aneurysm was significantly associated with an increased rehemorrhage risk after SRS (annual hemorrhage rate, 6.4%) compared with patients with a clipped or embolized aneurysm (annual hemorrhage rate, 0.8%; P=0.033).
CONCLUSIONS:
When an aneurysm is identified in patients with arteriovenous malformations selected for SRS, additional endovascular or surgical strategies should be considered to reduce the risk of bleeding during the latency interval.
Resumo:
A generator for the automated design of Discrete Cosine Transform (DCT) cores is presented. This can be used to rapidly create silicon circuits from a high level specification. These compare very favourably with existing designs. The DCT cores produced are scaleable in terms of point size as well as input/output and coefficient wordlengths. This provides a high degree of flexibility. An example, 8-point 1D DCT design, produced occupies less than 0.92 mm when implemented in a 0.35µ double level metal CMOS technology. This can be clocked at a rate of 100MHz.
Resumo:
A new high performance, programmable image processing chip targeted at video and HDTV applications is described. This was initially developed for image small object recognition but has much broader functional application including 1D and 2D FIR filtering as well as neural network computation. The core of the circuit is made up of an array of twenty one multiplication-accumulation cells based on systolic architecture. Devices can be cascaded to increase the order of the filter both vertically and horizontally. The chip has been fabricated in a 0.6 µ, low power CMOS technology and operates on 10 bit input data at over 54 Megasamples per second. The introduction gives some background to the chip design and highlights that there are few other comparable devices. Section 2 gives a brief introduction to small object detection. The chip architecture and the chip design will be described in detail in the later sections.
Resumo:
A multidimension, time-dependent Monte Carlo code is used to compute sample ?-ray spectra to explore whether unambiguous constraints could be obtained from ?-ray observations of Type Ia supernovae. Both spherical and aspherical geometries are considered and it is shown that moderate departures from sphericity can produce viewing-angle effects that are at least as significant as those caused by the variation of key parameters in 1D models. Thus, ?-ray data could, in principle, carry some geometrical information, and caution should be applied when discussing the value of ?-ray data based only on 1D explosion models. In light of the limited sensitivity of current ?-ray observatories, the computed theoretical spectra are studied to revisit the issue of whether useful constraints could be obtained for moderately nearby objects. The most useful ?-ray measurements are likely to be of the light curve and time-dependent hardness ratios, but sensitivity higher than currently available, particularly at relatively hard energies (~2-3 MeV), is desirable. © 2008 The Authors. Journal compilation © 2008 RAS.
Resumo:
The aim of this paper was to define the outcomes and risks of stereotactic radiosurgery (SRS) for Spetzler-Martin Grade I and II arteriovenous malformations (AVMs).
Resumo:
The authors conducted a study to define the long-term outcomes and risks of stereotactic radiosurgery (SRS) for arteriovenous malformations (AVMs) of the basal ganglia and thalamus.
Resumo:
In this paper, the authors' goal was to define the long-term outcomes and risks of stereotactic radiosurgery (SRS) for arteriovenous malformations (AVMs) of the medulla, pons, and midbrain.