36 resultados para SHORTWAVE IRRADIANCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasingly popular disrupted Langmuir–adsorption (DLA) kinetic model of photocatalysis does not contain an explicit function for the dependence of rate on the irradiance, ρ, but instead has a term αρθ, where, α is a constant of the system, and θ is also a constant equal to 1 or 0.5 at low or high ρ values, respectively. Several groups have recently replaced the latter term with an explicit function of the form χ1(−1 + (1 + χ2ρ)1/2), where χ1 and χ2, are constants that can be related to a proposed reaction scheme. Here the latter schemes are investigated, and revised to create a more credible form by assuming an additional hole trapping step. The latter may be the oxidation of water or a surface saturated with O2–. Importantly, this revision suggests that it is only applicable for low quantum yield/efficiency processes. The revised disrupted Langmuir–adsorption model is used to provide good fits to the kinetic data reported for a number of different systems including the photocatalytic oxidation of nitric oxide (NO), phenol (PhOH), and formic acid (FA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As one of key technologies in photovoltaic converter control, Maximum Power Point Tracking (MPPT) methods can keep the power conversion efficiency as high as nearly 99% under the uniform solar irradiance condition. However, these methods may fail when shading conditions occur and the power loss can over as much as 70% due to the multiple maxima in curve in shading conditions v.s. single maximum point in uniformly solar irradiance. In this paper, a Real Maximum Power Point Tracking (RMPPT) strategy under Partially Shaded Conditions (PSCs) is introduced to deal with this kind of problems. An optimization problem, based on a predictive model which will change adaptively with environment, is developed to tracking the global maxima and corresponding adaptive control strategy is presented. No additional circuits are required to obtain the environment uncertainties. Finally, simulations show the effectiveness of proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes large scale tests conducted on a novel unglazed solar air collector system. The proposed system, referred to as a back-pass solar collector (BPSC), has on-site installation and aesthetic advantages over conventional unglazed transpired solar collectors (UTSC) as it is fully integrated within a standard insulated wall panel. This paper presents the results obtained from monitoring a BPSC wall panel over one year. Measurements of temperature, wind velocity and solar irradiance were taken at multiple air mass flow rates. It is shown that the length of the collector cavities has a direct impact on the efficiency of the system. It is also shown that beyond a height-to-flow ratio of 0.023m/m<sup>3</sup>/hr/m<sup>2</sup>, no additional heat output is obtained by increasing the collector height for the experimental setup in this study, but these numbers would obviously be different if the experimental setup or test environment (e.g. location and climate) change. An equation for predicting the temperature rise of the BPSC is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shallow water kelp Laminaria digitata, abundant in coastal zones of the North Atlantic, is exposed to a range of hydrodynamic environments that makes it ideal for assessing the role of water motion on their growth rate. Here we quantify the growth of L. digitata, as a factor of blade and stipe elongation, at sites adjacent to Strangford Lough, Northern Ireland under different hydrodynamic conditions over a one year period. A modelling approach was used to numerically determine both the temporal and spatial variability of the hydrodynamic environment. Ambient seawater nutrient concentrations, temperature and irradiance were measured as well as the internal nutrient status of the L. digitata populations. Kelp populations growing in the greatest and lowest water motion showed the lowest growth rates. Differences observed in growth rate could not be attributed to seawater nutrient availability, temperature or light. The internal nutrient status also suggested no influence on the observed differences in growth rate. Therefore if there are minimal differences in light, temperature and nutrients between sites, then populations of L. digitata exposed to different water motions are likely to exhibit different growth rates. It is suggested that the growth rate differences observed were a function of water motion with the possibility that, in response to the hydrodynamic forces experienced by the algal cells, L. digitata kelps in the high energy environments were putting more energy into strengthening cell walls rather than blade elongation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By contrast to the Target Normal Sheath acceleration (TNSA) mechanism [1], Radiation Pressure Acceleration (RPA) is currently attracting a substantial amount of experimental [2,3] and theoretical [4-6] attention worldwide due to its superior scaling in terms of ion energy and laser-ion conversion efficiency. Employing Vulcan Petawatt lasers of the Rutherford Appleton Laboratory, UK, both the Hole-boring (HB) and the Light-Sail (LS) regimes of the RPA have been extensively explored. When the target thickness is of the order of hole-boring velocity times the laser pulse duration, highly collimated plasma jets of near solid density are ejected from the foil, lasting up to ns after the laser interaction. By changing the linear polarisation of the laser to circular, improved homogeneity in the jet's spatial density profile is achieved which suggests more uniform and sustained radiation pressure drive on target ions. By decreasing the target areal density or increasing irradiance on the target, the LS regime of the RPA is accessed where relatively high flux (~ 1012 particles/MeV/Sr) of ions are accelerated to ~ 10 MeV/nucleon energies in a narrow energy bandwidth. The ion energy scaling obtained from the parametric scans agrees well with theoretical estimation based on RPA mechanism and the narrow bandwidth feature in the ion spectra is studied by 2D particle-in-simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photocatalytic reactor described in the NOx removal ISO 22197-1:2007 is used to study the kinetics of the process, using a film of P25 TiO2 which has either been conventionally pre-irradiated in a stream of air, or unconventionally in a stream of NO (1 ppmv). In the former case it is shown that the system does not achieve steady state exit levels of NO, probably due to the gradual accumulation of HNO3 on the surface of the photocatalyst. The NO-preconditioned TiO2 film demonstrated excellent steady-state levels when monitored as a function of NO concentration, [NO] and UV irradiance, ρ. However, in this case the photocatalytic reaction under study is NOT NOx removal, but the conversion of NO to NO2. It is shown that the kinetics of this steady state process fit very well to a kinetic expression based on a disrupted adsorption reaction mechanism, which has also been used by others to fit their observed (non-steady state) kinetics for NOx removal on conventionally-(air) preconditioned films of P25. The appropriateness of this model for either system is questioned, since in both systems the kinetics appear to have a significant mass transport element. These findings suggest that mass transport and non-steady-state kinetics are likely to be significant features for most active photocatalytic samples, where the %NO conversion is >7%, and so limits the usefulness of the NOx removal ISO 22197-1:2007.