103 resultados para SERINE PROTEINASES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic Fibrosis (CF) is a genetic disease featuring a chronic cycle of inflammation and infection in the airways of sufferers. Mutations lead to altered ion transport, which in turn causes dehydrated airways and reduced mucociliary clearance which predisposes the patient to infection, resulting in a severe immune response and tissue destruction (1). Airway dehydration is primarily caused by the hyperabsorption of sodium by the epithelial sodium channel (ENaC) (2). ENaC is activated by the action of a number of predominantly trypsin-like Channel Activating Proteases (CAPs) including prostasin, matriptase and furin (3). Additional proteases known to activate ENaC include human airway trypsin (3), plasmin, neutrophil elastase and chymotrypsin (4).

Activity profiling is a valuable technique which involves the use of small inhibitory molecules called Activity-Based Probes (ABPs) which can be used to covalently label the active site of proteases and provide a range of information regarding its structure, catalytic mechanism, location and function within biological systems. The development of novel ABPs for CAPs, would enhance understanding of the role of these proteases in CF airways disease and in particular their role in ENaC activation and airway dehydration. This project investigates the application of a range of novel broad-spectrum ABPs targeting the various subclasses of serine proteases, to include those proteases involved in ENaC activation. Additionally, the application of more selective ABPs in detecting specific serine proteases is investigated.

Compounds were synthesised by Solid-Phase Peptide Synthesis (SPPS) using a standard Fmoc/tBu strategy. Kinetic evaluation of synthesised ABPs against various serine proteases was determined by fluorogenic steady-state enzyme assays. Furthermore, application of ABPs and confirmation of irreversible nature of the compounds was carried out through SDS-PAGE and electroblotting techniques.

Synthesised compounds showed potent irreversible inhibition of serine proteases within their respective targeting class (NAP855 vs Trypsin k3/Ki = 2.60 x 106 M-1 min-1, NFP849 vs Chymotrypsin k3/Ki = 1.28 x 106 M-1 min-1 and NVP800 vs Neutrophil Elastase k3/Ki = 6.41 x 104 M-1 min-1). Furthermore ABPs showed little to no cross-reactivity between classes and so display selectivity between classes. The irreversible nature of compounds was further demonstrated through labelling of proteases, followed by separation and detection via SDS-PAGE and electroblotting techniques. Targeted labelling of active proteases only, was demonstrated by failure of ABPs to detect previously inactivated proteases. Extension of the substrate recognition site within probes resulted in an increased potency and selectivity in the detection of the target proteases. Successful detection of neutrophil elastase from CF sputum samples by NVP800, demonstrated the application of compounds within biological samples and their potential use in identifying further proteases involved in ENaC activation and airway dehydration in CF patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF) lung disease is an inherited condition with an incidence rate of approximately 1 in 2500 new born babies. CF is characterized as chronic infection of the lung which leads to inflammation of the airway. Sputum from CF patients contains elevated levels of neutrophils and subsequently elevated levels of neutrophil serine proteases. In a healthy individual these proteases aid in the phagocytic process by degrading microbial peptides and are kept in homeostatic balance by cognate antiproteases. Due to the heavy neutrophil burden associated with CF the high concentration of neutrophil derived proteases overwhelms cognate antiproteases. The general effects of this protease/antiprotease imbalance are impaired mucus clearance, increased and self-perpetuating inflammation, and impaired immune responses and tissue. To restore this balance antiproteases have been suggested as potential therapeutics or therapeutic targets. As such a number of both endogenous and synthetic antiproteases have been trialed with mixed success as therapeutics for CF lung disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Protease activated receptors (PAR) belong to a subfamily of G protein coupled receptors. They consist of seven transmembrane domains but are not classical receptors as their agonist is a circulating serine proteinase. This proteinase cleaves an N-terminal extracellular domain of the receptor to reveal a new N-terminal tethered ligand which binds intramolecularly, thus converting an extracellular proteolytic event into a transmembrane signal. Therefore, the cleavage and activation of PARs provide a mechanism whereby proteinases can directly influence the inflammatory response. Gingival hyperplasia or gingival enlargement is a side effect of some drugs such as cyclosporine, a potent immunosuppressant. To date, the potential role of PAR in the inflammation associated with the pathogenesis of gingival overgrowth has not been studied. Objectives: The present study was designed to determine whether proteinases derived from extracts of cyclosporine induced hyperplasia were capable of activating PAR in vitro. Methods: Cell lysates were derived from tissue obtained from gingival overgrowth of patients requiring surgical excision. Cell lines over-expressing PARs were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% foetal calf serum (FCS) in 5% CO2. The cells were treated with gingival overgrowth lysates and agonist stimulated calcium release from the cells was recorded using the Fluo-4-Direct™ Calcium Assay Kit from Invitrogen, according to manufacturer's instructions. Results: Calcium release by activated PAR on tumour cells was detected in those treated with gingival hyperplasia lysates. Samples from healthy gingival fibroblasts did not elicit this response. Conclusions: The identification of mediators of the molecular events central to the inflammatory phenotype elicited by gingival hyperplasia is important. To this end, our experiments show that in vitro, enzymes derived from overgrown gingival tissue are capable of activating PAR and thereby provide evidence for the potential role of PAR in sustaining gingival hyperplasia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: LL-37, composed of 37 amino acid residues, is an innate host defence peptide of the cathelicidin family. It is expressed by neutrophils, monocytes and epithelial cells and exhibits both anti-bacterial and immunomodulatory properties. LL-37 is however prone to proteolytic degradation by proteinases, thus potentially limiting its inherent host defence properties in the inflammatory milieu. Objectives: The present study was designed to determine whether LL-37 was degraded by components of gingival crevicular fluid (GCF) from healthy subjects or those with periodontitis. In addition, we aimed to deduce whether degradation of the peptide was accelerated in GCF samples which were determined to be positive for the periodontopathic bacterium Porphyromonas gingivalis. Methods: GCF and bacterial plaque samples, pre- and post non-surgical periodontal treatment, were collected from 4 individual sites in patients presenting with advanced periodontitis. In healthy subjects, GCF samples only were collected. Plaque samples were analysed by QPCR for the presence or absence of P. gingivalis. Pooled GCF samples from healthy sites; periodontitis sites which were P. gingivalis negative (Pg-); or periodontitis sites which were P. gingivalis positive (Pg+), were incubated with synthetic LL-37 for 0 – 180 min. The degradation products were then analysed by matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS). Results: LL-37 was not degraded when incubated with GCF from healthy subjects. In contrast, LL-37 was degraded after 30 min when incubated with Pg- GCF. However degradation of LL-37 was apparent after only 2 min incubation with Pg+ GCF and the parent molecule was almost completely degraded after 30 min. Conclusions: The rapid degradation of LL-37, particularly in Pg+ sites, highlights the limited role which this host defence peptide may play in the presence of biologically active proteinases. It also underscores a potent virulence mechanism of P. gingivalis used to circumvent innate host responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Proteins belonging to the serine protease inhibitor (serpin) superfamily play essential physiological roles in many organisms. In pathogens, serpins are thought to have evolved specifically to limit host immune responses by interfering with the host immune-stimulatory signals. Serpins are less well characterised in parasitic helminths, although some are thought to be involved in mechanisms associated with host immune modulation. In this study, we cloned and partially characterised a secretory serpin from Schistosoma japonicum termed SjB6, these findings provide the basis for possible functional roles.

METHODS: SjB6 gene was identified through database mining of our previously published microarray data, cloned and detailed sequence and structural analysis and comparative modelling carried out using various bioinformatics and proteomics tools. Gene transcriptional profiling was determined by real-time PCR and the expression of native protein determined by immunoblotting. An immunological profile of the recombinant protein produced in insect cells was determined by ELISA.

RESULTS: SjB6 contains an open reading frame of 1160 base pairs that encodes a protein of 387 amino acid residues. Detailed sequence analysis, comparative modelling and structural-based alignment revealed that SjB6 contains the essential structural motifs and consensus secondary structures typical of inhibitory serpins. The presence of an N-terminal signal sequence indicated that SjB6 is a secretory protein. Real-time data indicated that SjB6 is expressed exclusively in the intra-mammalian stage of the parasite life cycle with its highest expression levels in the egg stage (p < 0.0001). The native protein is approximately 60 kDa in size and recombinant SjB6 (rSjB6) was recognised strongly by sera from rats experimentally infected with S. japonicum.

CONCLUSIONS: The significantly high expression of SjB6 in schistosome eggs, when compared to other life cycle stages, suggests a possible association with disease pathology, while the strong reactivity of sera from experimentally infected rats against rSjB6 suggests that native SjB6 is released into host tissue and induces an immune response. This study presents a comprehensive demonstration of sequence and structural-based analysis of a secretory serpin from a trematode and suggests SjB6 may be associated with important functional roles in S. japonicum, particularly in parasite modulation of the host microenvironment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kunitz-type (KT) protease inhibitors are low molecular weight proteins classically defined as serine protease inhibitors. We identified a novel secreted KT inhibitor associated with the gut and parenchymal tissues of the infective juvenile stage of Fasciola hepatica, a helminth parasite of medical and veterinary importance. Unexpectedly, recombinant KT inhibitor (rFhKT1) exhibited no inhibitory activity towards serine proteases but was a potent inhibitor of the major secreted cathepsin L cysteine proteases of F. hepatica, FhCL1 and FhCL2, and of human cathepsins L and K (Ki = 0.4 nM - 27 nM). FhKT1 prevented the auto-catalytic activation of FhCL1 and FhCL2 and formed stable complexes with the mature enzymes. Pull-down experiments from adult parasite culture medium showed that rFhKT1 interacts specifically with native secreted FhCL1, FhCL2 and FhCL5. Substitution of the unusual P1 Leu15 within the exposed reactive loop of FhKT1 for the more commonly found Arg (FhKT1Leu15/Arg15) had modest adverse effects on the cysteine protease inhibition but conferred potent activity against the serine protease trypsin (Ki = 1.5 nM). Computational docking and sequence analysis provided hypotheses for the exclusive binding of FhKT1 to cysteine proteases, the importance of the Leu15 in anchoring the inhibitor into the S2 active site pocket, and the inhibitor's selectivity towards FhCL1, FhCL2 and human cathepsins L and K. FhKT1 represents a novel evolutionary adaptation of KT protease inhibitors by F. hepatica, with its prime purpose likely in the regulation of the major parasite-secreted proteases and/or cathepsin L-like proteases of its host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thymidylate synthase (TS) is responsible for the de novo synthesis of thymidylate, which is required for DNA synthesis and repair and which is an important target for fluoropyrimidines such as 5-fluorouracil (5-FU), and antifolates such as Tomudex (TDX), ZD9331, and multitargeted antifolate (MTA). To study the importance of TS expression in determining resistance to these agents, we have developed an MDA435 breast cancer-derived cell line with tetracycline-regulated expression of TS termed MTS-5. We have demonstrated that inducible expression of TS increased the IC(50) dose of the TS-targeted therapeutic agents 5-FU, TDX, and ZD9331 by 2-, 9- and 24-fold respectively. An IC(50) dose for MTA was unobtainable when TS was overexpressed in these cells, which indicated that MTA toxicity is highly sensitive to increased TS expression levels. The growth inhibitory effects of the chemotherapeutic agents CPT-11, cisplatin, oxaliplatin, and Taxol were unaffected by TS up-regulation. Cell cycle analyses revealed that IC(50) doses of 5-FU, TDX and MTA caused an S-phase arrest in cells that did not overexpress TS, and this arrest was overcome when TS was up-regulated. Furthermore, the S-phase arrest was accompanied by 2- to 4-fold increased expression of the cell cycle regulatory genes cyclin E, cyclin A, and cyclin dependent kinase 2 (cdk2). These results indicate that acute increases in TS expression levels play a key role in determining cellular sensitivity to TS-directed chemotherapeutic drugs by modulating the degree of S-phase arrest caused by these agents. Moreover, CPT-11, cisplatin, oxaliplatin, and Taxol remain highly cytotoxic in cells that overexpress TS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a series of N-chloro-acetylated dipeptides were synthesised by the application of Houghten's methodology of multiple analog peptide syntheses. The peptides, all of which contain a C-terminal free acid, were tested as inactivators of bovine cathepsin B, in an attempt at exploiting the known and, amongst the cysteine proteinases, unique carboxy dipeptidyl peptidase activity of the protease. We have succeeded in obtaining a number of effective inactivators, the most potent of which-chloroacetyl-Leu-Leu-OH, inactivates the enzyme with an apparent second-order rate constant of 3.8 x 10(4) M-1 min(-1). In contrast, the esterified analog, chloroacetyl-Leu-Leu-OMe, inactivates the enzyme some three orders of magnitude less efficiently, lending credence to our thesis that a free carboxylic acid moiety is an important determinant for inhibitor effectiveness. This preliminary study has highlighted a number of interesting features about the specificity requirements of the bovine proteinase and we believe that our approach has great potential for the rapid delineation of the subsite specificities of cathepsin B-like proteases from various species. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cysteine proteinases have been implicated in astrocytoma invasion. We recently demonstrated that cathepsin S (CatS) expression is up-regulated in astrocytomas and provided evidence for a potential role in astrocytoma invasion (Flannery et al., Am J Path 2003;163(1):175–82). We aimed to evaluate the significance of CatS in human astrocytoma progression and as a prognostic marker. Frozen tissue homogenates from 71 patients with astrocytomas and 3 normal brain specimens were subjected to ELISA analyses. Immunohistochemical analysis of CatS expression was performed on 126 paraffin-embedded tumour samples. Fifty-one astrocytoma cases were suitable for both frozen tissue and paraffin tissue analysis. ELISA revealed minimal expression of CatS in normal brain homogenates. CatS expression was increased in grade IV tumours whereas astrocytoma grades I–III exhibited lower values. Immunohistochemical analysis revealed a similar pattern of expression. Moreover, high-CatS immunohistochemical scores in glioblastomas were associated with significantly shorter survival (10 vs. 5 months, p = 0.014). With forced inclusion of patient age, radiation dose and Karnofsky score in the Cox multivariate model, CatS score was found to be an independent predictor of survival. CatS expression in astrocytomas is associated with tumour progression and poor outcome in glioblastomas. CatS may serve as a useful prognostic indicator and potential target for anti-invasive therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We found that engagement of beta 2 integrins on human neutrophils increased the levels of GTP-bound Rap1 and Rap2. Also, the activation of Rap1 was blocked by PP1, SU6656, LY294002, GF109203X, or BAPTA-AM, which indicates that the downstream signaling events in Rap1 activation involve Src tyrosine kinases, phosphoinositide 3-kinase, protein kinase C, and release of calcium. Surprisingly, the integrin-induced activation of Rap2 was not regulated by any of the signaling pathways mentioned above. However, we identified nitric oxide as the signaling molecule involved in beta 2 integrin-induced activation of Rap1 and Rap2. This was illustrated by the fact that engagement of beta 2 integrins increased the production of nitrite, a stable end-product of nitric oxide. Furthermore, pretreatment of neutrophils with N-monomethyl-L-arginine, or 1400W, which are inhibitors of inducible nitric-oxide synthase, blocked integrin-induced activation of Rap1 and Rap2. Similarly, Rp-8pCPT-cGMPS, an inhibitor of cGMP-dependent serine/threonine kinases, also blunted the integrin-induced activation of Rap GTPases. Also nitric oxide production and its downstream activation of cGMP-dependent serine/threonine kinases were essential for proper neutrophil adhesion by beta 2 integrins. Thus, we made the novel findings that beta 2 integrin engagement on human neutrophils triggers production of nitric oxide and its downstream signaling is essential for activation of Rap GTPases and neutrophil adhesion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The order Nidovirales comprises viruses from the families Coronaviridae (genera Coronavirus and Torovirus), Roniviridae (genus Okavirus), and Arteriviridae (genus Arterivirus). In this study, we characterized White bream virus (WBV), a bacilliform plus-strand RNA virus isolated from fish. Analysis of the nucleotide sequence, organization, and expression of the 26.6-kb genome provided conclusive evidence for a phylogenetic relationship between WBV and nidoviruses. The polycistronic genome of WBV contains five open reading frames (ORFs), called ORF1a, -1b, -2, -3, and -4. In WBV-infected cells, three subgenomic RNAs expressing the structural proteins S, M, and N were identified. The subgenomic RNAs were revealed to share a 42-nucleotide, 5' leader sequence that is identical to the 5'-terminal genome sequence. The data suggest that a conserved nonanucleotide sequence, CA(G/A)CACUAC, located downstream of the leader and upstream of the structural protein genes acts as the core transcription-regulating sequence element in WBV. Like other nidoviruses with large genomes (>26 kb), WBV encodes in its ORF1b an extensive set of enzymes, including putative polymerase, helicase, ribose methyltransferase, exoribonuclease, and endoribonuclease activities. ORF1a encodes several membrane domains, a putative ADP-ribose 1"-phosphatase, and a chymotrypsin-like serine protease whose activity was established in this study. Comparative sequence analysis revealed that WBV represents a separate cluster of nidoviruses that significantly diverged from toroviruses and, even more, from coronaviruses, roniviruses, and arteriviruses. The study adds to the amazing diversity of nidoviruses and appeals for a more extensive characterization of nonmammalian nidoviruses to better understand the evolution of these largest known RNA viruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpha-1 antitrypsin (A1AT) is a serine anti-protease produced chiefly by the liver. A1AT deficiency is a genetic disorder characterized by serum levels of less than 11 μmol/L and is associated with liver and lung manifestations. The liver disease, which occurs in up to 15% of A1AT-deficient individuals, is a result of toxic gain-of-function mutations in the A1AT gene, which cause the A1AT protein to fold aberrantly and accumulate in the endoplasmic reticulum of hepatocytes. The lung disease is associated with loss-of-function, specifically decreased anti-protease protection on the airway epithelial surface. The so-called 'Z' mutation in A1AT deficiency encodes a glutamic acid-to-lysine substitution at position 342 in A1AT and is the most common A1AT allele associated with disease. Here we review the current understanding of the molecular pathogenesis of A1AT deficiency and the best clinical management protocols. © Springer Science+Business Media B.V. 2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The therapeutic potential of glucagon-like peptide-1 (GLP-1) in improving glycaemic control in diabetes has been widely studied, but the potential beneficial effects of glucose-dependent insulinotropic polypeptide (GIP) have until recently been almost overlooked. One of the major problems, however, in exploiting either GIP or GLP-1 as potential therapeutic agents is their short duration of action, due to enzymatic degradation in vivo by dipeptidylpeptidase IV (DPP IV). Therefore, this study examined the plasma stability, biological activity and antidiabetic potential of two novel NH2-terminal Ala(2)-substituted analogues of GIP, containing glycine (Gly) or serine (Ser). Following incubation in plasma, (Ser(2))GIP had a reduced hydrolysis rate compared with native GIP, while (Gly(2))GIP was completely stable. In Chinese hamster lung fibroblasts stably transfected with the human GIP receptor, GIP, (Gly(2))GIP and (Ser(2))GIP stimulated cAMP production with EC50 values of 18.2, 14.9 and 15.0 nM respectively. In the pancreatic BRIN-BD1 beta-cell line, (Gly(2))GIP and (Ser(2))GIP (10(-8) M) evoked significant increases (1.2- and 1.5-fold respectively; P