74 resultados para S0 Galaxies


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on Suzaku observations of selected regions within the southern giant lobe of the radio galaxy Centaurus A. In our analysis we focus on distinct X-ray features detected with the X-ray Imaging Spectrometer within the range 0.5-10 keV, some of which are likely associated with fine structure of the lobe revealed by recent high-quality radio intensity and polarization maps. With the available photon statistics, we find that the spectral properties of the detected X-ray features are equally consistent with thermal emission from hot gas with temperatures kT > 1 keV, or with a power-law radiation continuum characterized by photon indices Gamma similar to 2.0 +/- 0.5. However, the plasma parameters implied by these different models favor a synchrotron origin for the analyzed X-ray spots, indicating that a very efficient acceleration of electrons up to greater than or similar to 10 TeV energies is taking place within the giant structure of Centaurus A, albeit only in isolated and compact regions associated with extended and highly polarized radio filaments. We also present a detailed analysis of the diffuse X-ray emission filling the whole field of view of the instrument, resulting in a tentative detection of a soft excess component best fitted by a thermal model with a temperature of kT similar to 0.5 keV. The exact origin of the observed excess remains uncertain, although energetic considerations point to thermal gas filling the bulk of the volume of the lobe and mixed with the non-thermal plasma, rather than to the alternative scenario involving a condensation of the hot intergalactic medium around the edges of the expanding radio structure. If correct, this would be the first detection of the thermal content of the extended lobes of a radio galaxy in X-rays. The corresponding number density of the thermal gas in such a case is n(g) similar to 10(-4) cm(-3), while its pressure appears to be in almost exact equipartition with the volume-averaged non-thermal pressure provided by the radio-emitting electrons and the lobes' magnetic field. A prominent large-scale fluctuation of the Galactic foreground emission, resulting in excess foreground X-ray emission aligned with the lobe, cannot be ruled out. Although tentative, our findings potentially imply that the structure of the extended lobes in active galaxies is likely to be highly inhomogeneous and non-uniform, with magnetic reconnection and turbulent acceleration processes continuously converting magnetic energy to internal energy of the plasma particles, leading to possibly significant spatial and temporal variations in the plasma beta parameter around the volume-averaged equilibrium condition beta similar to 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-organization(1,2) occurs in plasmas when energy progressively transfers from smaller to larger scales in an inverse cascade(3). Global structures that emerge from turbulent plasmas can be found in the laboratory(4) and in astrophysical settings; for example, the cosmic magnetic field(5,6,) collisionless shocks in supernova remnants(7) and the internal structures of newly formed stars known as Herbig-Haro objects(8). Here we show that large, stable electromagnetic field structures can also arise within counter-streaming supersonic plasmas in the laboratory. These surprising structures, formed by a yet unexplained mechanism, are predominantly oriented transverse to the primary flow direction, extend for much larger distances than the intrinsic plasma spatial scales and persist for much longer than the plasma kinetic timescales. Our results challenge existing models of counter-streaming plasmas and can be used to better understand large-scale and long-time plasma self-organization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z=0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z=0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M_g=-17.42+/-0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12+log(O/H)=7.5+/-0.1 dex as determined from the detection of the [OIII] 4363 Angs line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240-560 days after explosion to search for any sign of radioactive nickel-56, which might provide further insights on the explosion mechanism and the progenitor's nature. We reach griz magnitudes of m_AB~26, but do not detect SN 2010gx at these epochs. The limit implies that any nickel-56 production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M_sun of nickel-56). The low volumetric rates of these supernovae (~10^-4 of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z_sun), high progenitor mass (>60 M_sun) and high rotation rate (fastest 10% of rotators).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on our discovery and observations of the Pan-STARRS1 supernova (SN) PS1-12sk, a transient with properties that indicate atypical star formation in its host galaxy cluster or pose a challenge to popular progenitor system models for this class of explosion. The optical spectra of PS1-12sk classify it as a Type Ibn SN (c.f. SN 2006jc), dominated by intermediate-width (3x10^3 km/s) and time variable He I emission. Our multi-wavelength monitoring establishes the rise time dt = 9-23 days and shows an NUV-NIR SED with temperature > 17x10^3 K and a peak rise magnitude of Mz = -18.9 mag. SN Ibn spectroscopic properties are commonly interpreted as the signature of a massive star (17 - 100 M_sun) explosion within a He-enriched circumstellar medium. However, unlike previous Type Ibn supernovae, PS1-12sk is associated with an elliptical brightest cluster galaxy, CGCG 208-042 (z = 0.054) in cluster RXC J0844.9+4258. The expected probability of an event like PS1-12sk in such environments is low given the measured infrequency of core-collapse SNe in red sequence galaxies compounded by the low volumetric rate of SN Ibn. Furthermore, we find no evidence of star formation at the explosion site to sensitive limits (Sigma Halpha

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use natural seeing imaging of SN 2013ej in M74 to identify a progenitor candidate in archival Hubble Space Telescope (HST) + Advanced Camera for Survey images. We find a source coincident with the supernova (SN) in the F814W filter within the total 75 mas (~3 pc astrometric uncertainty; however, the position of the progenitor candidate in contemporaneous F435W and F555W filters is significantly offset. We conclude that the 'progenitor candidate' is in fact two physically unrelated sources; a blue source which is likely unrelated to the SN, and a red source which we suggest exploded as SN 2013ej. Deep images with the same instrument on board HST taken when the SN has faded (in approximately two year's time) will allow us to accurately characterize the unrelated neighbouring source and hence determine the intrinsic flux of the progenitor in three filters.We suggest that the F814W flux is dominated by the progenitor of SN 2013ej, and assuming a bolometric correction appropriate to an M-type supergiant, we estimate that the mass of the progenitor of SN 2013ej was between 8 and 15.5M⊙. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Super-luminous supernovae that radiate more than 10 44 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56 Ni are synthesized; this isotope decays to 56 Fe via 56 Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10 -6 times that of the core-collapse rate. © 2013 Macmillan Publishers Limited. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key tracer of the elusive progenitor systems of Type Ia supernovae (SNe Ia) is the detection of narrow blueshifted time-varying Na I D absorption lines, interpreted as evidence of circumstellar material surrounding the progenitor system. The origin of this material is controversial, but the simplest explanation is that it results from previous mass-loss in a system containing a white dwarf and a non-degenerate companion star. We present new single-epoch intermediate-resolution spectra of 17 low-redshift SNe Ia taken with XShooter on the European Southern Observatory Very Large Telescope. Combining this sample with events from the literature, we confirm an excess (∼20 per cent) of SNe Ia displaying blueshifted narrow Na I D absorption features compared to redshifted Na I D features. The host galaxies of SNe Ia displaying blueshifted absorption profiles are skewed towards later-type galaxies, compared to SNe Ia that show no Na I D absorption and SNe Ia displaying blueshifted narrow Na I D absorption features have broader light curves. The strength of the Na I D absorption is stronger in SNe Ia displaying blueshifted Na I D absorption features than those without blueshifted features, and the strength of the blueshifted Na I D is correlated with the B − V colour of the SN at maximum light. This strongly suggests the absorbing material is local to the SN. In the context of the progenitor systems of SNe Ia, we discuss the significance of these findings and other recent observational evidence on the nature of SN Ia progenitors. We present a summary that suggests that there are at least two distinct populations of normal, cosmologically useful SNe Ia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: Mg VIII emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg VIII emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics.

Aims. Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg VIII ion. The 125 levels arise from the 2s(2)2p, 2s(2)p2, 2p(3), 2s(2)3s, 2s(2)3p, 2s(2)3d, 2s2p3s, 2s2p3p, 2s2p3d, 2p(2)3s, 2p(2)3p and 2p(2)3d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg VIII models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 angstrom, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 angstrom) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data.

Methods. The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg VIII models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas.

Results. The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the observed values from the SERTS-89 and SUMER spectra. Theoretical soft X-ray emission lines are presented and several density diagnostic line ratios examined, which are in reasonable agreement with the limited observational data available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports variations of polycyclic aromatic hydrocarbons (PAHs) features that were found in Spitzer Space Telescope spectra of carbon-rich post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). The paper consists of two parts. The first part describes our Spitzer spectral observing programme of 24 stars including post-AGB candidates. The latter half of this paper presents the analysis of PAH features in 20 carbon-rich post-AGB stars in the LMC, assembled from the Spitzer archive as well as from our own programme.We found that five post-AGB stars showed a broad feature with a peak at 7.7 μm, that had not been classified before. Further, the 10-13 μm PAH spectra were classified into four classes, one of which has three broad peaks at 11.3, 12.3 and 13.3 μm rather than two distinct sharp peaks at 11.3 and 12.7 μm, as commonly found in HII regions. Our studies suggest that PAHs are gradually processed while the central stars evolve from post-AGB phase to planetary nebulae, changing their composition before PAHs are incorporated into the interstellar medium. Although some metallicity dependence of PAH spectra exists, the evolutionary state of an object is more significant than its metallicity in determining the spectral characteristics of PAHs for LMC and Galactic post-AGB stars. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations from the HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE ) have been used to identify dusty populations of sources in the Large and Small Magellanic Clouds (LMC and SMC). We conducted the study using the HERITAGE catalogs of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS; 100 and 160 μm) and Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, and 500 μm) cameras. These catalogs are matched to each other to create a Herschel band-merged catalog and then further matched to archival Spitzer IRAC and MIPS catalogs from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and SAGE-SMC surveys to create single mid- to far-infrared (far-IR) point source catalogs that span the wavelength range from 3.6 to 500 μm. There are 35,322 unique sources in the LMC and 7503 in the SMC. To be bright in the FIR, a source must be very dusty, and so the sources in the HERITAGE catalogs represent the dustiest populations of sources. The brightest HERITAGE sources are dominated by young stellar objects (YSOs), and the dimmest by background galaxies. We identify the sources most likely to be background galaxies by first considering their morphology (distant galaxies are point-like at the resolution of Herschel) and then comparing the flux distribution to that of the Herschel Astrophysical Terahertz Large Area Survey (ATLAS ) survey of galaxies. We find a total of 9745 background galaxy candidates in the LMC HERITAGE images and 5111 in the SMC images, in agreement with the number predicted by extrapolating from the ATLAS flux distribution. The majority of the Magellanic Cloud-residing sources are either very young, embedded forming stars or dusty clumps of the interstellar medium. Using the presence of 24 μm emission as a tracer of star formation, we identify 3518 YSO candidates in the LMC and 663 in the SMC. There are far fewer far-IR bright YSOs in the SMC than the LMC due to both the SMC's smaller size and its lower dust content. The YSO candidate lists may be contaminated at low flux levels by background galaxies, and so we differentiate between sources with a high ("probable") and moderate ("possible ") likelihood of being a YSO. There are 2493/425 probable YSO candidates in the LMC/SMC. Approximately 73% of the Herschel YSO candidates are newly identified in the LMC, and 35% in the SMC. We further identify a small population of dusty objects in the late stages of stellar evolution including extreme and post-asymptotic giant branch, planetary nebulae, and supernova remnants. These populations are identified by matching the HERITAGE catalogs to lists of previously identified objects in the literature. Approximately half of the LMC sources and one quarter of the SMC sources are too faint to obtain accurate ample FIR photometry and are unclassified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis of ≃19 500 narrow (≲200 km s-1) CIV λλ1548.2,1550.8 absorbers in ≃34 000 Sloan Digital Sky Survey quasar spectra is presented. The statistics of the number of absorbers as a function of outflow velocity shows that in approximately two-thirds of outflows, with multiple C IV absorbers present, absorbers are line-locked at the 500 km s-1 velocity separation of the C IV absorber doublet; appearing as 'triplets' in the quasar spectra. Line-locking is an observational signature of radiative line-driving in outflowing material, where the successive shielding of 'clouds' of material in the outflow locks the clouds together in outflow velocity. Line-locked absorbers are seen in both broad absorption line (BAL) quasars and non-BAL quasars with comparable frequencies and with velocities out to at least 20 000 km s-1. There are no detectable differences in the absorber properties and the dust content of single C IV doublets and line-locked C IV doublets. The gas associated with both single and line-locked CIV absorption systems includes material with a wide range of ionization potential (14-138 eV). Both single and line-locked CIV absorber systems show strong systematic trends in their ionization as a function of outflow velocity, with ionization decreasing rapidly with increasing outflow velocity. Initial simulations, employing CLOUDY, demonstrate that a rich spectrum of line-locked signals at various velocities may be expected due to significant opacities from resonance lines of Li-, He- and H-like ions of O, C and N, along with contributions from He II and HI resonance lines. The simulations confirm that line-driving can be the dominant acceleration mechanism for clouds with N(H I) ≃ 1019 cm-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 mu m data and improved imaging quality at 100 and 160 mu m compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 mu m [O-I] line flux, eliminating the possibility that line contaminations distort the previously estimated dustmass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 mu m flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5 +/- 0.1M(circle dot) of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3M(circle dot) of amorphous carbon and 0.5M(circle dot) of silicates, totalling 0.8M(circle dot) of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the results of the photometric and spectroscopic monitoring campaign of the transient SN 2007sv. The observables are similar to those of Type IIn supernovae, a well-known class of objects whose ejecta interact with pre-existing circumstellar material (CSM). The spectra show a blue continuum at early phases and prominent Balmer lines in emission; however, the absolute magnitude at the discovery of SN 2007sv (M-R=-14.25 +/- 0.38) indicate it to be most likely a supernova impostor. This classification is also supported by the lack of evidence in the spectra of very high velocity material as expected in supernova ejecta. In addition, we find no unequivocal evidence of broad lines of alpha- and/or Fe-peak elements. The comparison with the absolute light curves of other interacting objects (including Type IIn supernovae) highlights the overall similarity with the prototypical impostor SN 1997bs. This supports our claim that SN 2007sv was not a genuine supernova, and was instead a supernova impostor, most likely similar to the major eruption of a luminous blue variable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The masses and the evolutionary states of the progenitors of core-collapse supernovae are not well constrained by direct observations. Stellar evolution theory generally predicts that massive stars with initial masses less than about 30M_sol should undergo core-collapse when they are cool M-type supergiants. However the only two detections of a SN progenitor before explosion are SN1987A and SN1993J, and neither of these was an M-type supergiant. Attempting to identify the progenitors of supernovae is a difficult task, as precisely predicting the time of explosion of a massive star is impossible for obvious reasons. There are several different types of supernovae which have different spectral and photometric evolution, and how exactly these are related to the evolutionary states of the progenitor stars is not currently known. I will describe a novel project which may allow the direct identification of core-collapse supernovae progenitors on pre-explosion images of resolved, nearby galaxies. This project is now possible with the excellent image archives maintained by several facilities and will be enhanced by the new initiatives to create Virtual Observatories, the earliest of which ASTROVIRTEL is already producing results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last 15 years, the supernova community has endeavoured to directly identify progenitor stars for core-collapse supernovae discovered in nearby galaxies. These precursors are often visible as resolved stars in high-resolution images from space-and ground-based telescopes. The discovery rate of progenitor stars is limited by the local supernova rate and the availability and depth of archive images of galaxies, with 18 detections of precursor objects and 27 upper limits. This review compiles these results (from 1999 to 2013) in a distance-limited sample and discusses the implications of the findings. The vast majority of the detections of progenitor stars are of type II-P, II-L, or IIb with one type Ib progenitor system detected and many more upper limits for progenitors of Ibc supernovae (14 in all). The data for these 45 supernovae progenitors illustrate a remarkable deficit of high-luminosity stars above an apparent limit of log L/L-circle dot similar or equal to 5.1 dex. For a typical Salpeter initial mass function, one would expect to have found 13 high-luminosity and high-mass progenitors by now. There is, possibly, only one object in this time-and volume-limited sample that is unambiguously high-mass (the progenitor of SN2009ip) although the nature of that supernovae is still debated. The possible biases due to the influence of circumstellar dust, the luminosity analysis, and sample selection methods are reviewed. It does not appear likely that these can explain the missing high-mass progenitor stars. This review concludes that the community's work to date shows that the observed populations of supernovae in the local Universe are not, on the whole, produced by high-mass (M greater than or similar to 18 M-circle dot) stars. Theoretical explosions of model stars also predict that black hole formation and failed supernovae tend to occur above an initial mass of M similar or equal to 18 M-circle dot. The models also suggest there is no simple single mass division for neutron star or black-hole formation and that there are islands of explodability for stars in the 8-120 M-circle dot range. The observational constraints are quite consistent with the bulk of stars above M similar or equal to 18 M-circle dot collapsing to form black holes with no visible supernovae.