39 resultados para S. epidermidis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multitude of biomolecular and regulatory factors involved in staphylococcal adhesion and biofilm formation owe much to their ability to colonize surfaces, allowing the biofilm form to become the preferential bacterial phenotype. Judging by total number, biomass and variety of environments colonized, bacteria can be categorized as the most successful lifeform on earth. This is due to the ability of bacteria and other microorganisms to respond phenotypically via biomolecular processes to the stresses of their surrounding environment. This review focuses on the specific pathways involved in the adhesion of the Gram-positive bacteria Staphylococcus epidermidis and Staphylococcus aureus with reference to the role of specific cell surface adhesins, the ica operon, accumulation-associated proteins and quorum-sensing systems and their significance in medical device-related infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe, for the first time, the microbial characterisation of hydrogel-forming polymeric microneedle arrays and the potential for passage of microorganisms into skin following microneedle penetration. Uniquely, we also present insights into the storage stability of these hydroscopic formulations, from physical and microbiological viewpoints, and examine clinical performance and safety in human volunteers. Experiments employing excised porcine skin and radiolabelled microorganisms showed that microorganisms can penetrate skin beyond the stratum corneum following microneedle puncture. Indeed, the numbers of microorganisms crossing the stratum corneum following microneedle puncture were greater than 105 cfu in each case. However, no microorganisms crossed the epidermal skin. When using a 21G hypodermic needle, more than 104 microorganisms penetrated into the viable tissue and 106 cfu of Candida albicans and Staphylococcus epidermidis completely crossed the epidermal skin in 24 h. The hydrogel-forming materials contained no microorganisms following de-moulding and exhibited no microbial growth during storage, while also maintaining their mechanical strength, apart from when stored at relative humidities of 86%. No microbial penetration through the swelling microneedles was detectable, while human volunteer studies confirmed that skin or systemic infection is highly unlikely when polymeric microneedles are used for transdermal drug delivery. Since no pharmacopoeial standards currently exist for microneedle-based products, the exact requirements for a proprietary product based on hydrogel-forming microneedles are at present unclear. However, we are currently working towards a comprehensive specification set for this microneedle system that may inform future developments in this regard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm eradication concentration (MBEC) and kill kinetics were established for vancomycin, rifampicin, trimethoprim, gentamicin, and ciprofloxacin against the biofilm forming bacteria Staphylococcus epidermidis (ATCC 35984), Staphylococcus aureus (ATCC 29213), Methicillin Resistant Staphylococcus aureus (MRSA) (ATCC 43300), Pseudomonas aeruginosa (PAO1), and Escherichia coli (NCTC 8196). MICs and MBCs were determined via broth microdilution in 96-well plates. MBECs were studied using the Calgary Biofilm Device. Values obtained were used to investigate the kill kinetics of conventional antimicrobials against a range of planktonic and biofilm microorganisms over a period of 24 hours. Planktonic kill kinetics were determined at 4xMIC and biofilm kill kinetics at relative MBECs. Susceptibility of microorganisms varied depending on antibiotic selected and phenotypic form of bacteria. Gram-positive planktonic isolates were extremely susceptible to vancomycin (highest MBC: 7.81 mg L−1: methicillin sensitive and resistant S. aureus) but no MBEC value was obtained against all biofilm pathogens tested (up to 1000 mg L−1). Both gentamicin and ciprofloxacin displayed the broadest spectrum of activity with MIC and MBCs in the mg L−1 range against all planktonic isolates tested and MBEC values obtained against all but S. epidermidis (ATCC 35984) and MRSA (ATCC 43300).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-assembling dipeptides conjugated to naphthalene show considerable promise as nanomaterial structures, biomaterials, and drug delivery devices. Biomaterial infections are responsible for high rates of patient mortality and morbidity. The presence of biofilm bacteria, which thrive on implant surfaces, are a huge burden on healthcare budgets, as they are highly resistant to current therapeutic strategies. Ultrashort cationic self-assembled peptides represent a highly innovative and cost-effective strategy to form antibacterial nanomaterials. Lysine conjugated variants display the greatest potency with 2% w/v NapFFKK hydrogels significantly reducing the viable Staphylococcus epidermidis biofilm by 94%. Reducing the size of the R-group methylene chain on cationic moieties resulted in reduction of antibiofilm activity. The primary amine of the protruding R-group tail may not be as readily available to interact with negatively charged bacterial membranes. Cryo-SEM, FTIR, CD spectroscopy, and oscillatory rheology provided evidence of supramolecular hydrogel formation at physiological pH (pH 7.4). Cytotoxicity assays against murine fibroblast (NCTC 929) cell lines confirmed the gels possessed reduced cytotoxicity relative to bacterial cells, with limited hemolysis upon exposure to equine erythrocytes. The results presented in this paper highlight the significant potential of ultrashort cationic naphthalene peptides as future biomaterials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we report the antimicrobial planktonic and biofilm kill kinetics of ultrashort cationic lipopeptides previously demonstrated by our group to have a minimum biofilm eradication concentration (MBEC) in the microgram per mL (μg/mL) range against clinically relevant biofilm-forming micro-organisms. We compare the rate of kill for the most potent of these lipopeptides, dodecanoic (lauric) acid-conjugated C<sub>12sub>-Orn-Orn-Trp-Trp-NH<sub>2sub> against the tetrapeptide amide H-Orn-Orn-Trp-Trp-NH<sub>2sub> motif and the amphibian peptide Maximin-4 via a modification of the MBEC Assay™ for Physiology & Genetics (P&G). Improved antimicrobial activity is achieved upon N-terminal lipidation of the tetrapeptide amide. Increased antimicrobial potency was demonstrated against both planktonic and biofilm forms of Gram-positive micro-organisms. We hypothesize rapid kill to be achieved by targeting of microbial membranes. Complete kill against established 24-h Gram-positive biofilms occurred within 4 h of exposure to C<sub>12sub>-OOWW-NH<sub>2sub> at MBEC values [methicillin-resistant Staphylococcus epidermidis (ATCC 35984): 15.63 μg/mL] close to the values for the planktonic minimum inhibitory concentration (MIC) [methicillin-resistant Staphylococcus epidermidis (ATCC 35984): 1.95 μg/mL]. Such rapid kill, especially against sessile biofilm forms, is indicative of a reduction in the likelihood of resistant strains developing with the potential for quicker resolution of pathogenic infection. Ultrashort antimicrobial lipopeptides have high potential as antimicrobial therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Over 20 million people in the US are living with an implantable medical device [ADDIN RW.CITE{{3114 Higgins,DavidM 2009}}1], with similar figures anticipated for Europe. Complications in the use of medical implants include the Foreign Body Response (FBR) characterised by macrophage adherence and fusion, and device-related infection due to bacterial biofilm formationADDIN RW.CITE{{3124 Harding,JacquelineL 2014}}2. Both can have detrimental consequences on the structural and functional integrity of the medical device [ADDIN RW.CITE{{3101 Anderson,JamesM 2008; 3124 Harding,JacquelineL 2014}}2,3], often necessitating removal; a painful and expensive procedure [ADDIN RW.CITE{{3121 Mah,Thien-FahC 2001}}4]. Materials are sought to attenuate both the FBR and device-related infection, leading to medical devices with improved biocompatibility and performance. Objectives The present work involves development of a semi-interpenetrating network (SIPN) hydrogel containing polygalacturonic acid (PGA), a biopolysaccharide similar in structure to hyaluronic acid. We aim to synthesise, characterise and determine the in vitro biocompatibility of the developed SIPN. Results & Discussion We have successfully incorporated PGA into a poly(HEMA) based hydrogel, which shows favourable swelling and wettability. The surface topography appears altered in comparison to the control material, with pronounced micrometer-scale features. In terms of in vitro performance, the SIPN showed increased protein adsorption, and biofilm formation (Staphylococcus epidermidis and Escherichia coli, up to 1 Log CFU/sample greater than control). However the SIPN displayed minimal cytotoxicity towards L929 fibroblasts, and was resistant to the adherence of RAW 264.7 macrophages. Conclusions The PGA incorporated SIPN lacks cytotoxicity and shows reduced macrophage adherence, however the increased biofilm formation highlights a concern regarding possible device related infection in clinical use. Future work will focus on strategies to reduce bacterial adherence, while maintaining biocompatibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug-resistant pathogens. Biofilm-forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra-peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram-positive medical device-related pathogens. 3-(4-Hydroxyphenyl)propionic)-Orn-Orn-Trp-Trp-NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24-h biofilms at MBEC with 6-h exposure. Reduced cell cytotoxicity, relative to Gram-positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes).

Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost-effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impending and increasing threat of antimicrobial resistance has led to a greater focus into developing alternative therapies as substitutes for traditional antibiotics for the treatment of multi-drug resistant infections.1 Our group has developed a library of short, cost-effective, diphenylalanine-based peptides (X1-FF-X2) which selective eradicate (viability reduced >90% in 24 hours) the most resistant biofilm forms of a range of Gram-positive and negative pathogens including: methicillin resistant and sensitive Staphyloccoccus aureus and Staphyloccoccus epidermidis; Pseudomonas aeruginosa, Proteus mirabilis and Escherichia coli. They demonstrate a reduced cell cytotoxic profile (NCTC929 murine fibroblast) and limited haemolysis.2 Our molecules have the ability respond to subtle changes in pH, associated with bacterial infection, self-assembling to form β-sheet secondary structures and supramolecular hydrogels at low concentrations (~0.5%w/v). Conjugation of variety of aromatic-based drugs at the X1 position, including non-steroidal anti-inflammatories (NSAIDs), confer further pharmacological properties to the peptide motif enhancing their therapeutic potential. In vivo studies using waxworms (Galleria mellonella) provide promising preliminary results demonstrating the low toxicity and high antimicrobial activity of these low molecular weight gelators in animal models. This work shows biofunctional peptide-based nanomaterials hold great promise for future translation to patients as antimicrobial drug delivery and biomaterial platforms.3 [1] G. Laverty, S.P. Gorman and B.F. Gilmore. Int.J.Mol.Sci. 2011, 12, 6566-6596. [2] G. Laverty, A.P. McCloskey, B.F. Gilmore, D.S. Jones, J Zhou, B Xu. Biomacromolecules. 2014, 15, 9, 3429-3439. [3] A.P. McCloskey, B.F. Gilmore and G.Laverty. Pathogens. 2014, 3, 791-821.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of ‘The Three R€™ (The 3Rs: reduction, refinement and replacement) is an important consideration in the development of alternatives to animal testing in medical research. Invertebrate models such as Galleria mellonella are advantageous both economically and ethically.1 Galleria have proven to be effective alternatives to assess the antimicrobial activity of novel therapeutics.2
In this study Galleria mellonella are validated and used as an in vivo infection model to determine the antimicrobial activity of a novel self-assembling antimicrobial peptide NapFFKK.3 The peptide was considered as being non-toxic to the Galleria with 100% survival 120 hours post inoculation with NapFFKK. Following inoculation with Pseudomonas aeruginosa PAO1, Escherichia coli ATCC 11303, Staphylococcus epidermidis ATCC 35984 and Staphylococcus aureus ATCC 6538, the highest concentration allowing survival was selected and used as the test inoculum. Haemolymph was extracted from inoculated and peptide treated Galleria at either 24 or 72 hours post-treatment. Reduction in bacterial load was determined in comparison to a positive control. Bacterial load was decreased in all treated Galleria with decreasing antimicrobial activity demonstrated with a decreased concentration of peptide (2- log cycle reduction achieved in Escherichia coli inoculated Galleria treated with 2% NapFFKK). The results are promising regarding the use of Galleria mellonella as an infection model and NapFFKK as an effective novel antimicrobial.