115 resultados para Running-based anaerobic sprint test
Resumo:
The density functional theory (DFT) based hard-soft acid-base (HSAB) reactivity indices, including the electrophilicity index, have been successfully applied to many areas of molecular chemistry. In this work we test the applicability of such an approach to fundamental surface chemistry. We have considered, as prototypical surface reactions, both the hydrogenation of atomic nitrogen and the dissociative adsorption of the NH molecular radical. By use of a DFT methodology, the minimum energy reaction pathways, and corresponding reaction barriers, of the above reactions over Zr(001), Nb(110), Mo(110), Tc(001), Ru(001), Rh(111), and Pd(111) have been determined. By consideration of the chemical potential and chemical hardness of the surface metal atoms, and the principle of electronegativity equalization, it is found that the charge transferred to the NH radical during the process of dissociative adsorption correlates very well with that determined by Mulliken population analysis. Furthermore, it is found that the stability of the NH/surface transition state complex relates directly to this charge transfer and that the trend in transition state stability predicted by a HSAB; treatment correlates very strongly with that determined by DFT calculations. With regards to N hydrogenation, we find that during the course of the reaction, H loses cohesion to the surface, as it must migrate from a 3-fold hollow site to either a bridge or top site, to react with N. Partial density of states (PDOS) and Mulliken population analysis reveal that this loss of bonding is accompanied by charge transfer from H to the surface metal atoms. Moreover, by simple modeling, we show that the reaction barriers are directly proportional to this mandatory charge transfer. Indeed, it is found that the reaction barriers correlate very well with the electrophilicity index of the metal atoms.
Resumo:
A periodic finite-difference time-domain (FDTD) analysis is presented and applied for the first time in the study of a two-dimensional (2-D) leaky-wave planar antenna based on dipole frequency selective surfaces (FSSs). First, the effect of certain aspects of the FDTD modeling in the modal analysis of complex waves is studied in detail. Then, the FDTD model is used for the dispersion analysis of the antenna of interest. The calculated values of the leaky-wave attenuation constants suggest that, for an antenna of this type and moderate length, a significant amount of power reaches the edges of the antenna, and thus diffraction can play an important role. To test the validity of our dispersion analysis, measured radiation patterns of a fabricated prototype are presented and compared with those predicted by a leaky-wave approach based on the periodic FDTD results.
Resumo:
A constrained non-linear, physical model-based, predictive control (NPMPC) strategy is developed for improved plant-wide control of a thermal power plant. The strategy makes use of successive linearisation and recursive state estimation using extended Kalman filtering to obtain a linear state-space model. The linear model and a quadratic programming routine are used to design a constrained long-range predictive controller One special feature is the careful selection of a specific set of plant model parameters for online estimation, to account for time-varying system characteristics resulting from major system disturbances and ageing. These parameters act as nonstationary stochastic states and help to provide sufficient degrees-of-freedom to obtain unbiased estimates of controlled outputs. A 14th order non-linear plant model, simulating the dominant characteristics of a 200 MW oil-fired pou er plant has been used to test the NPMPC algorithm. The control strategy gives impressive simulation results, during large system disturbances and extremely high rate of load changes, right across the operating range. These results compare favourably to those obtained with the state-space GPC method designed under similar conditions.
Resumo:
This letter proposes an efficient extension of the set partitioning embedded block (SPECK) algorithm to lossless multispectral image coding. Such a wavelet-based coder is widely referred to in the literature, especially for lossless image coding, and is considered to be one of the most efficient techniques exhibiting very low computational complexity when compared with other state-of-the-art coders. The modification proposed in this letter is simple and provides significant improvement over the conventional SPECK. The key idea is to join each group of two consecutive wavelet-transformed spectral bands during the SPECK coding since they show high similarities with respect to insignificant sets at the same locations. Simulation results, carried out on a number of test images, demonstrate that this grouping procedure considerably saves on the bit budget for encoding the multispectral images.
Resumo:
In this paper, we verify a new phase conjugating architecture suitable for deployment as (lie core building block in retrodirective antenna arrays, which can be scaled to any number of elements in a modular way without impacting on complexity. Our solution is based on a modified in-phase and quadrature modulator architecture, which completely resolves four major shortcomings of the conventional mixer-based approach currently used for the synthesis of phase conjugated energy derived from a sampled incoming wavefront. 1) The architecture presented removes the need for a local oscillator running at twice the RF signal frequency to be conjugated. 2) It maintains a constant transmit power even if receive power goes as low as -120 dBm. 3) All unwanted re-transmit signal products are suppressed by at least 40 dB. 4) The issue of poor RF-IF leakage prevalent in mixer-based phase-conjugation solutions is completely mitigated. The circuit has also been shown to have high conjugation accuracy (better than +/-1 degrees at -60-dBm input). Near theoretically perfect experimental monostatic and bistatic results are presented for a ten-element retrodirective array constructed using the new phase conjugation architecture.
Resumo:
Matrix metalloproteinase-3 (MMP-3) has been proposed as an important mediator of the atherosclerotic process. The possible role of the functional -1612(.)5A/6A polymorphism of the MMP-3 gene in the susceptibility to ischaemic heart disease (IHD) was investigated in a well-defined Irish population using two recently described family based tests of association. One thousand and twelve individuals from 386 families with at least one member prematurely affected with IHD were genotyped. Using the combined transmission disequilibrium test (TDT)/sib-TDT and the pedigree disequilibrium test (PDT), no association between the MMP-3 -1612 5A/6A polymorphism and IHD was found. Our data demonstrate that, in an Irish population, the MMP-3 -1612 5A/6A polymorphism is not associated with IHD.
Resumo:
The monitoring of multivariate systems that exhibit non-Gaussian behavior is addressed. Existing work advocates the use of independent component analysis (ICA) to extract the underlying non-Gaussian data structure. Since some of the source signals may be Gaussian, the use of principal component analysis (PCA) is proposed to capture the Gaussian and non-Gaussian source signals. A subsequent application of ICA then allows the extraction of non-Gaussian components from the retained principal components (PCs). A further contribution is the utilization of a support vector data description to determine a confidence limit for the non-Gaussian components. Finally, a statistical test is developed for determining how many non-Gaussian components are encapsulated within the retained PCs, and associated monitoring statistics are defined. The utility of the proposed scheme is demonstrated by a simulation example, and the analysis of recorded data from an industrial melter.
Resumo:
The Microarray Innovations in Leukemia study assessed the clinical utility of gene expression profiling as a single test to subtype leukemias into conventional categories of myeloid and lymphoid malignancies. METHODS: The investigation was performed in 11 laboratories across three continents and included 3,334 patients. An exploratory retrospective stage I study was designed for biomarker discovery and generated whole-genome expression profiles from 2,143 patients with leukemias and myelodysplastic syndromes. The gene expression profiling-based diagnostic accuracy was further validated in a prospective second study stage of an independent cohort of 1,191 patients. RESULTS: On the basis of 2,096 samples, the stage I study achieved 92.2% classification accuracy for all 18 distinct classes investigated (median specificity of 99.7%). In a second cohort of 1,152 prospectively collected patients, a classification scheme reached 95.6% median sensitivity and 99.8% median specificity for 14 standard subtypes of acute leukemia (eight acute lymphoblastic leukemia and six acute myeloid leukemia classes, n = 693). In 29 (57%) of 51 discrepant cases, the microarray results had outperformed routine diagnostic methods. CONCLUSION: Gene expression profiling is a robust technology for the diagnosis of hematologic malignancies with high accuracy. It may complement current diagnostic algorithms and could offer a reliable platform for patients who lack access to today's state-of-the-art diagnostic work-up. Our comprehensive gene expression data set will be submitted to the public domain to foster research focusing on the molecular understanding of leukemias
Resumo:
The development of a quick PCR-based method to distinguish European cryptic Myotis spp., Myotis mystacinus, Myotis brandtii and Myotis alcathoe is described. Primers were designed around species-specific single nucleotide polymorphisms (SNP’s) in the ND1 mitochondrial gene, and a pair of control primers was designed in the 12S mitochondrial gene. A multiplex of seven primer combinations produces clear species-specific bands using gel electrophoresis. Robustness of the method was tested on 33 M. mystacinus, 16 M. brandtii and 15 M. alcathoe samples from across the European range of these species. The method worked well on faecal samples collected from maternity roosts of M. mystacinus. The test is intended to aid collection of data on these species through a rapid and easy identification method with the ability to use DNA obtained from a range of sources including faecal matter.
Resumo:
This article reports the behaviour of three photocatalyst indicator inks, based on the redox dyes: methylene blue (NIB), resorufin (Rf) and 2,6-dichloroindophenol (DCIP), and assess their performance in comparison to the pioneering resazurin (Rz)-based ink for the rapid assessment of the activity of very thin, photocatalyst films, such as Activ (TM) self-cleaning glass. From a commercial 'demonstrator of photocatalysis' perspective, all three redox dyes appear more attractive compared to Rz since all generate colourless products in the ink formulation when photoreduced on Activ (TM) under anaerobic conditions, whereas, the reduced product from Rz, the redox dye resorufin, Rf. is pink in colour. However, the ink based on Rf is far too slow to effect the rapid measurement of photocatalytic activity even in the absence of oxygen, and in the presence of oxygen the latter inhibits the overall kinetics of photoreduction by re-oxidising the reduced product, dihydroresorufin, HRf, back to Rf. Similarly, despite the attractive rapid rate of photobleaching for NIB under anaerobic conditions, compared to the other redox dyes, the reduced product of the MB-based ink. leuco-MB, is so oxygen-sensitive that the ink cannot be photoreduced under aerobic conditions, thus rendering the ink unsuitable for use in the field. The DCIP-based ink is slightly less easy to photoreduce under both anaerobic and ambient atmospheric conditions compared to the Rz-based ink. However. in addition to its more attractive colour change, the DCIP-based ink is unaffected by the ambient level of oxygen present (%O-2) and the relative humidity (%RH), whereas, for the Rz-based ink, both parameters effect the photoreduction kinetics. By incorporating the DCIP ink into a felt-tipped pen, the ink is suitable for use in the laboratory and field to perform not only a qualitative test, but also to allow a semi-quantitative analysis of photocatalytic activity by eye. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper compares the Random Regret Minimization and the Random Utility Maximization models for determining recreational choice. The Random Regret approach is based on the idea that, when choosing, individuals aim to minimize their regret – regret being defined as what one experiences when a non-chosen alternative in a choice set performs better than a chosen one in relation to one or more attributes. The Random Regret paradigm, recently developed in transport economics, presents a tractable, regret-based alternative to the dominant choice paradigm based on Random Utility. Using data from a travel cost study exploring factors that influence kayakers’ site-choice decisions in the Republic of Ireland, we estimate both the traditional Random Utility multinomial logit model (RU-MNL) and the Random Regret multinomial logit model (RR-MNL) to gain more insights into site choice decisions. We further explore whether choices are driven by a utility maximization or a regret minimization paradigm by running a binary logit model to examine the likelihood of the two decision choice paradigms using site visits and respondents characteristics as explanatory variables. In addition to being one of the first studies to apply the RR-MNL to an environmental good, this paper also represents the first application of the RR-MNL to compute the Logsum to test and strengthen conclusions on welfare impacts of potential alternative policy scenarios.
Resumo:
Proxy records derived from ombrotrophic peatlands provide important insights into climate change over decadal to millennial timescales. We present mid- to late- Holocene humification data and testate amoebae-derived water table records from two peatlands in Northern Ireland. We examine the repli- cation of periodicities in these proxy climate records, which have been precisely linked through teph- rochronology. Age-depth models are constructed using a Bayesian piece-wise linear accumulation model and chronological errors are calculated for each profile. A Lomb-Scargle Fourier transform-based spectral analysis is used to test for statistically significant periodicities in the data. Periodicities of c. 130, 180, 260, 540 and 1160 years are present in at least one proxy record at each site. The replication of these peri- odicities provides persuasive evidence that they are a product of allogenic climate controls, rather than internal peatland dynamics. A technique to estimate the possible level of red-noise in the data is applied and demonstrates that the observed periodicities cannot be explained by a first-order autoregressive model. We review the periodicities in the light of those reported previously from other marine and terrestrial climate proxy archives to consider climate forcing parameters. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Water-table reconstructions from Holocene peatlands are increasingly being used as indicators of terrestrial palaeoclimate in many regions of the world. However, the links between peatland water tables, climate, and long-term peatland development are poorly understood. Here we use a combination of high-resolution proxy climate data and a model of long-term peatland development to examine the relationship between rapid hydrological fluctuations in peatlands and climatic forcing. We show that changes in water-table depth can occur independently of climate forcing. Ecohydrological feedbacks inherent in peatland development can lead to a degree of homeostasis that partially disconnects peatland water-table behaviour from external climatic influences. We conclude by suggesting that further work needs to be done before peat-based climate reconstructions can be used to test climate models.
Resumo:
Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.
Resumo:
Objective: A community-based randomized controlled trial (RCT) was conducted in urban areas characterized by high levels of disadvantage to test the effectiveness of the Incredible Years BASIC parent training program (IYBP) for children with behavioral problems. Potential moderators of intervention effects on child behavioral outcomes were also explored. Method: Families were included if the child (aged 32-88 months) scored above a clinical cutoff on the Eyberg Child Behavior Inventory (ECBI). Participants (n = 149) were randomly allocated on a 2:1 ratio to an intervention group (n = 103) or a waiting-list control group (n = 46). Child behavior, parenting skills, and parent well-being were assessed at baseline and 6 months later using parent-report and independent observations. An intention-to-treat analysis of covariance was used to examine postintervention differences between groups. Results: Statistically significant differences in child disordered behavior favored the intervention group on the ECBI Intensity (effect size = 0.7, p