37 resultados para Routine Activity Theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbides are important phases in heterogeneous catalysis. However, the understanding of carbide phases is inadequate: Fe and Co are the two commercial catalysts for Fischer-Tropsch (FT) synthesis, and experimental work showed that Fe carbide is the active phase in FT synthesis, whereas the appearance of Co carbide is considered as a possible deactivation cause, TO understand very different catalytic roles of carbides, all the key elementary steps in FT synthesis, that is, CO dissociation, C(1) hydrogenation, and C(1)+C(1) coupling, are extensively investigated on both carbide surfaces using first principles calculations. In particular, the most important issues in FT synthesis, the activity and methane selectivity, on the carbide surfaces are quantitatively determined and analyzed. They are also discussed together with metallic Fe and Co surfaces. It is found that (i) Fe carbide is more active than metallic Fe and has similar methane selectivity to Fe, being consistent with the experiments; and (ii) Co carbide is less active than Co and has higher methane selectivity, providing evidence on the molecular level to support the suggestion that the formation of Co carbide is a cause of relatively high methane selectivity and deactivation on Co catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structures and catalytic activities of Au thin films supported at anatase TiO(2)(101)) and a Au substrate are studied by using density functional theory calculations. The results show that O(2) can hardly adsorb at flat and stepped Au thin films, even supported by fully reduced TiO(2)(101) that can highly disperse Au atoms and offer strong electronic promotion. Interestingly, in both oxide-supported and pure Au. systems, wire-structured Au can adsorb both CO and O(2) rather strongly, and kinetic analysis suggests its high catalytic activity for low-temperature CO oxidation. The d-band center of Au at the catalytic site is determined to account for the unusual activity of the wire-structured film. A generalized structural model based on the wire-structured film is proposed for active Au, and possible support effects are discussed: Selected oxide surfaces can disperse Au atoms and stabilize the formation of a filmlike structure; they may also serve as a template for the preferential arrangement of Au atoms in a wire structure under low Au coverage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional theory calculations are carried out for Rh(111)-p(2 x 2)-CO, Rh(111)-p(2 x 2)-S, Rh(111)-p(2 x 2)-(S + CO), Rh(111)-p(3 x 3)-CO, Rh(111)-p(3 x 3)-S and Rh(111)-p(3 x 3)-(S + CO), aiming to shed some light on the S poisoning effect. Geometrical structures of these systems are optimized and chemisorption energies are determined. The presence of S does not significantly influence the geometrical structure and chemisorption energy of CO and vice versa, which strongly suggests that the interaction between CO and S on the Rh(111) surface is mainly short-range in nature. The long range electronic effect for the dramatic attenuation of the CO methanation activity by sulfur is likely to be incorrect. It is suggested that an ensemble effect may be dominant in the catalytic deactivation. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent experimental investigation (Kim et al. J. Catal. 306 (2013) 146-154) on the selective hydrogenation of acetylene over Pd nanoparticles with different shapes concluded that Pd(100) showed higher activity and selectivity than Pd(111) for acetylene hydrogenation. However, our recent density functional calculations (Yang et al. J. Catal. 305 (2013) 264-276) observed that the clean Pd(111) surface should result in higher activity and ethylene selectivity compared with the clean Pd(100) surface for acetylene hydrogenation. In the current work, using density functional theory calculations, we find that Pd(100) in the carbide form gives rise to higher activity and selectivity than Pd(111) carbide. These results indicate that the catalyst surface is most likely in the carbide form under the experimental reaction conditions. Furthermore, the adsorption energies of hydrogen atoms as a function of the hydrogen coverage at the surface and subsurface sites over Pd(100) are compared with those over Pd(111), and it is found that the adsorption of hydrogen atoms is always less favoured on Pd(100) over the whole coverage range. This suggests that the Pd(100) hydride surface will be less stable than the Pd(111) hydride surface, which is also in accordance with the experimental results reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterogeneous catalysis is of great importance both industrially and academically. Rational design of heterogeneous catalysts is highly desirable, and the computational screening and design method is one of the most promising approaches for rational design of heterogeneous catalysts. Herein, we review some attempts towards the rational catalyst design using density functional theory from our group. Some general relationships and theories on the activity and selectivity are covered, such as the Brønsted–Evans–Polanyi relation, volcano curves/surfaces, chemical potentials, optimal adsorption energy window and energy descriptor of selectivity. Furthermore, the relations of these relationships and theories to the rational design are discussed, and some examples of computational screening and design method are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The critique of human rights has proliferated in critical legal thinking over recent years, making it clear that we can no longer uncritically approach human rights in their liberal form. In this article I assert that after the critique of rights one way human rights may be productively re-engaged in radical politics is by drawing from the radical democratic tradition. Radical democratic thought provides plausible resources to rework the shortcomings of liberal human rights, and allows human rights to be brought within the purview of a wider political project adopting a critical approach to current relations of power. Building upon previous re-engagements with rights using radical democratic thought, I return to the work of Ernesto Laclau and Chantal Mouffe to explore how human rights may be thought as an antagonistic hegemonic activity within a critical relation to power, a concept which is fundamentally futural, and may emerge as one site for work towards radical and plural democracy. I also assert, via Judith Butler's model of cultural translation, that a radical democratic practice of human rights may be advanced which resonates with and builds upon already existing activism, thereby holding possibilities to persuade those who remain sceptical as to radical re-engagements with rights.