150 resultados para Roman baths, hot springs
Ibuprofen-Loaded Poly(-caprolactone) Layered Silicate Nanocomposites Prepared by Hot Melt Extrusion
Resumo:
The `hot Jupiters' that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which they were born, or by an alternative mechanism such as planet-planet scattering. The hot Jupiters closest to their parent stars, at orbital distances of only ~0.02 astronomical units, have strong tidal interactions, and systems such as OGLE-TR-56 have been suggested as tests of tidal dissipation theory. Here we report the discovery of planet WASP-18b with an orbital period of 0.94days and a mass of ten Jupiter masses (10MJup), resulting in a tidal interaction an order of magnitude stronger than that of planet OGLE-TR-56b. Under the assumption that the tidal-dissipation parameter Q of the host star is of the order of 106, as measured for Solar System bodies and binary stars and as often applied to extrasolar planets, WASP-18b will be spiralling inwards on a timescale less than a thousandth that of the lifetime of its host star. Therefore either WASP-18 is in a rare, exceptionally short-lived state, or the tidal dissipation in this system (and possibly other hot-Jupiter systems) must be much weaker than in the Solar System.
Resumo:
We report the discovery of a new transiting close-in giant planet, WASP-24 b, in a 2.341 day orbit, 0.037 AU from its F8-9 type host star. By matching the star's spectrum with theoretical models, we infer an effective temperature T eff = 6075 ± 100 K and a surface gravity of log g = 4.15 ± 0.10. A comparison of these parameters with theoretical isochrones and evolutionary mass tracks places only weak constraints on the age of the host star, which we estimate to be 3.8+1.3 –1.2 Gyr. The planetary nature of the companion was confirmed by radial velocity measurements and additional photometric observations. These data were fit simultaneously in order to determine the most probable parameter set for the system, from which we infer a planetary mass of 1.071+0.036 –0.038 M Jup and radius 1.3+0.039 –0.037 R Jup.
Resumo:
This paper describes a serpentine flexure spring design and fabrication process development for radio frequency microelectromechanical (RF MEMS) capacitive switches with coplanar waveguide (CPW) lines. Sputtered tungsten is employed as the CPW line conductor instead of Au, a non-Si compatible material. The bridge membrane is fabricated from Al. The materials and fabrication process can be integrated with CMOS and SOI technology to reduce cost. Results show the MEMS switch has excellent performance with insertion loss 0.3dB, return loss -27dB at 30GHz and high isolation -30dB at 40GHz. The process developed promises to simplify the design and fabrication of RF MEMS on silicon.