34 resultados para Rock cavy
Resumo:
Rock rinds have been used for half a century to date glacial deposits and recently inroads have been developed to use nuclides to provide absolute ages of weathering rinds in pebble clasts. Although maximum and minimum rind thicknesses have helped to elucidate time since deposition and allowed stratigraphic division of deposits at glacial rank, little has been done to investigate the wealth of mineral degradation, growth of alteration products and biomineralization that occur in these weathered crusts. In some cases the mass of microbe-mineral intergrowth is nearly present on a 50%/50% basis, with the biotic mass intergrown with mineral matter to such an extent that it probably controls pH and redox phenomena that act as accelerators in the weathering process. Assuming weathering time spans of 2 × 106 years or more for a complete cycle, eventual clast decomposition is the end product. Here we present evidence of microbe-clast intergrowth from selected sites of Pleistocene age (~70 ka to 2.0 Ma) in the lower Afroalpine of Mt. Kenya and hypothesize about its role in rock decomposition and fossilization of biotic end-members. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Despite fractured hard rock aquifers underlying over 65% of Ireland, knowledge of key processes controlling groundwater recharge in these bedrock systems is inadequately constrained. In this study, we examined 19 groundwater-level hydrographs from two Irish hillslope sites underlain by hard rock aquifers. Water-level time-series in clustered monitoring wells completed at the subsoil, soil/bedrock interface, shallow and deep bedrocks were continuously monitored hourly over two hydrological years. Correlation methods were applied to investigate groundwater-level response to rainfall, as well as its seasonal variations. The results reveal that the direct groundwater recharge to the shallow and deep bedrocks on hillslope is very limited. Water-level variations within these geological units are likely dominated by slow flow rock matrix storage. The rapid responses to rainfall (⩽2 h) with little seasonal variations were observed to the monitoring wells installed at the subsoil and soil/bedrock interface, as well as those in the shallow or deep bedrocks at the base of the hillslope. This suggests that the direct recharge takes place within these units. An automated time-series procedure using the water-table fluctuation method was developed to estimate groundwater recharge from the water-level and rainfall data. Results show the annual recharge rates of 42–197 mm/yr in the subsoil and soil/bedrock interface, which represent 4–19% of the annual rainfall. Statistical analysis of the relationship between the rainfall intensity and water-table rise reveal that the low rainfall intensity group (⩽1 mm/h) has greater impact on the groundwater recharge rate than other groups (>1 mm/h). This study shows that the combination of the time-series analysis and the water-table fluctuation method could be an useful approach to investigate groundwater recharge in fractured hard rock aquifers in Ireland.