41 resultados para Rib Cage
Resumo:
This article documents the creation of a work by the authors based on a score written by the composer John Cage entitled 'Owenvarragh: A Belfast Circus on The Star Factory.' The article is part of a documentary portfolio in the journal which also includes a volume of the poetry created by Dowling in accordance with the instructions of the Cage score, and a series of documentary videos on the creation of the work and its first performance. Cage's score is based on his work 'Roaratorio: An Irish Circus on Finnegan's Wake' (1979) and it provides a set of detailed instructions for the musical realisation of a literary work. The article documents this first fully realised version of the score since Cage first produced 'Roaratorio' in 1979. The work, which was motivated by the Cage centenary year in 2012, musically realises Carson's book 'The Star Factory' (1998), a novelestic autobiography of Carson's Belfast childhood. The score required the creation of a fixed media piece based on over 300 field recordings of the sounds and places mentioned in the book, a volume of poetry created from the book which is recited to form the rhythmic spine of the work, and the arrangement of a performance including these two components along with live musical performance by the authors in collaboration with three other musicians under their direction, and a video installation created for the work. The piece has been performed three times: in association with the Sonorities 2012 Festival at Queen's University of Belfast (March 2012), at The Belfast Festival at Queen's (October 2012), and in the Rymer Auditoium of the University of York (June 2013).
Additional information:
The work which the article documents was conceived by Monaghan and Dowling, and the project was initiated by Monaghan after a she received a student prize to support its development and first performance. Elements of the project will be included in her PhD dissertation for which Dowling is a supervisor. Monaghan created the fixed media piece based on over 300 field recordings, the largest single aspect of realising Cage's score. Dowling was responsible for initiating the collaboration with Ciaran Carson, and for two other components: the creation of a volume of poetry derived from the literary work which is recited in the performance, and the creation of and supervision of the technical work on a video which accompanies the piece. The co-authors consulted closely during the work on these large components from May 2011 until March 2012 when the first performance took place. The co-authors also shared in numerous other artistic and organisational aspects of the production, including the arrangement and performnance of the music, musical direction to other performers, and marketing.
Resumo:
A set of 138 "mesostics" from Ciaran Carson's novel "The Star Factory" poems derived from the chance determination procedure devised by John Cage and set out in the score of his "Roaratorio: An Irish Circus on Finnegan's Wake," a musical realisation of James Joyce's novel 'Finnegan's Wake." The publication forms part of a portfolio on the project "Owenvarragh: A belfast Circus on The Star Factory", published in the special John Cage issue of this journal.
Resumo:
Organoarsonate-functionalized polyoxovanadates form upon the reduction of vanadates(V) in aqueous systems, whereby the underlying condensation reactions are influenced by the nature of the employed acid. In the presence of Cl− ions that derive from hydrochloric acid, a tetradecanuclear cage [VIV14O16(OH)8(O3AsC6H4-4-NH2)10]4– is obtained. When nitric acid is used, a condensed, decanuclear complex [V10O18(O3AsC6H4-4-NH2)7(DMF)2]5– forms. The latter organizes into a hexagonal packing arrangement in the solid state.
Resumo:
Herein we report the intra- and inter-molecular assembly of a {V5O9} subunit. This mixed-valent structural motif can be stabilised as [V5O9(L1–3)4]5−/9− (1–3) by a range of organoarsonate ligands (L1–L3) whose secondary functionalities influence its packing arrangement within the crystal structures. Variation of the reaction conditions results in the dodecanuclear cage structure [V12O14(OH)4(L1)10]4− (4) where two modified convex building units are linked via two dimeric {O4VIV(OH)2VIVO4} moieties. Bi-functional phosphonate ligands, L4–L6 allow the intramolecular connectivity of the {V5O9} subunit to give hybrid capsules [V10O18(L4–6)4]10− (5–7). The dimensions of the electrophilic cavities of the capsular entities are determined by the incorporated ligand type. Mass spectrometry experiments confirm the stability of the complexes in solution. We investigate and model the temperature-dependent magnetic properties of representative complexes 1, 4, 6 and 7 and provide preliminary cell-viability studies of three different cancer cell lines with respect to Na8H2[6]·36H2O and Na8H2[7]·2DMF·29H2O.
Resumo:
Standard microporous materials are typically crystalline solids that exhibit a regular array of cavities of uniform size and shape. Packing and directional bonding between molecular building blocks give rise to interstitial pores that confer size and shape-specific sorption properties to the material. In the liquid state interstitial cavities are transient. However, permanent and intrinsic "pores'' can potentially be built into the structure of the molecules that constitute the liquid. With the aid of computer simulations we have designed, synthesised and characterised a series of liquids composed of hollow cage-like molecules, which are functionalised with hydrocarbon chains to make them liquid at accessible temperatures. Experiments and simulations demonstrate that chain length and size of terminal chain substituents can be used to tune, within certain margins, the permanence of intramolecular cavities in such neat liquids. Simulations identify a candidate "porous liquid'' in which 30% of the cages remain empty in the liquid state. Absorbed methane molecules selectively occupy these empty cavities.
Resumo:
This paper explores my experiments with computer animated notation. It examines how I turned to
computer animated notation to address issues with static musical notation. In particular looking at
the work of Nancarrow, Cage, Tenney, and how a number of these composers' approaches
presented difficult challenges for traditional musical notation. I then discuss how computer
animated notation can provide some interesting solutions to the notational problems provoked in
these works.
In the second part of the paper I investigate how addressing these notational challenges has led to
new prespectives on the compositional process and has introduced new considerations into my
compositional practice including time as musical material, real-time and multi-nodal interaction
with the score, networked score environments with the possibility of physically distributed
performance, performer feedback and communication, and interaction between notation and other
media including visual media and movement.
Resumo:
The parasitical relationship between the grand piano and the myriad objects used in its preparation as pioneered by John Cage in the late 1940’s is here discussed from a perspective of free improvisation practice. Preparations can be defined as the use of a “non-instrument” object (screws, bolts, rubbers etc…) to alter or modify the behaviour of an instrument or part of an instrument. Although also present in instrumental practices based on the electric guitar or the drum kit, the piano provides a privileged space of exploration given its large‐scale resonant body. It also highlights the transgressive aspect of preparation (the piano to be prepared often belongs to a venue rather than to the pianist herself, hence highlighting relationships of trust, care and respect). Since 2007 I have used a guitar-object (a small wooden board with strings and pick ups) connected to a small amplifier to prepare the grand piano in my free improvisation practice. This paper addresses the different relationships afforded by this type preparation which is characterised by the fact that the object for preparation is in itself an instrument (albeit a simplified one), and the preparation is ephemeral and intrinsic to the performance. The paper also reflects on the process of designing an interface from and for a particular practice and in collaboration with a guitar luthier.
Resumo:
AIMS: To determine the incidence and predictive factors of rib fracture and chest wall pain after lung stereotactic ablative radiotherapy (SABR).
MATERIALS AND METHODS: Patients were treated with lung SABR of 48-60 Gy in four to five fractions. The treatment plan and follow-up computed tomography scans of 289 tumours in 239 patients were reviewed. Dose-volume histogram (DVH) metrics and clinical factors were evaluated as potential predictors of chest wall toxicity.
RESULTS: The median follow-up was 21.0 months (range 6.2-52.1). Seventeen per cent (50/289) developed a rib fracture, 44% (22/50) were symptomatic; the median time to fracture was 16.4 months. On univariate analysis, female gender, osteoporosis, tumours adjacent (within 5 mm) to the chest wall and all of the chest wall DVH metrics predicted for rib fracture, but only tumour location adjacent to the chest wall remained significant on the multivariate model (P < 0.01). The 2 year fracture-free probability for those adjacent to the chest wall was 65.6%. Among those tumours adjacent to the chest wall, only osteoporosis (P = 0.02) predicted for fracture, whereas none of the chest wall DVH metrics were predictive. Eight per cent (24/289) experienced chest wall pain without fracture.
CONCLUSIONS: None of the chest wall DVH metrics independently predicted for SABR-induced rib fracture when tumour location is taken into account. Patients with tumours adjacent (within 5 mm) to the chest wall are at greater risk of rib fracture after lung SABR, and among these, an additional risk was observed in osteoporotic patients.
Resumo:
AIMS: To determine whether Abl immunoreactivity correlates with grade and cell kinetics (apoptosis and mitosis) in chondrosarcoma.
METHODS: Sections from 16 chondrosarcomas were stained immunohistochemically using a polyclonal antibody to the c-Abl/Bcr-Abl oncoprotein. Apoptotic indices and mitotic indices were assessed in all tumours. Sections from 24 paraffin wax blocks of human fetal rib (gestational ages, 15-42 weeks) were also stained to determine whether the Abl protein is synthesised consistently throughout endochondral ossification.
RESULTS: Abl staining in immature fetal rib chondrocytes at all stages of development was predominantly nuclear, and 70% of cells showed moderate to strong staining. Abl immunoreactivity was minimal or absent in hypertrophic chondrocytes about to undergo apoptosis at the growth plate. There was strong Abl staining in grade 1 and grade 2 chondrosarcomas but staining was greatly reduced or absent in grade 3 chondrosarcomas. There was a very significant linear correlation between apoptotic index (mean, 0.68%; range, 0-3.2%) and mitotic index (mean, 0.23%; range, 0-0.9%), and both indices were significantly lower in grade 1 than in grade 2 and grade 3 chondrosarcomas.
CONCLUSIONS: These data suggest that abl gene expression is associated with differentiation and apoptosis inhibition in fetal and neoplastic chondrocytes. However, these putative effects cannot be ascribed solely to the Abl protein, because several additional factors contribute to the regulation of both differentiation and apoptosis.
Resumo:
Porous solids such as zeolites and metal-organic frameworks are useful in molecular separation and in catalysis, but their solid nature can impose limitations. For example, liquid solvents, rather than porous solids, are the most mature technology for post-combustion capture of carbon dioxide because liquid circulation systems are more easily retrofitted to existing plants. Solid porous adsorbents offer major benefits, such as lower energy penalties in adsorption-desorption cycles, but they are difficult to implement in conventional flow processes. Materials that combine the properties of fluidity and permanent porosity could therefore offer technological advantages, but permanent porosity is not associated with conventional liquids. Here we report free-flowing liquids whose bulk properties are determined by their permanent porosity. To achieve this, we designed cage molecules that provide a well-defined pore space and that are highly soluble in solvents whose molecules are too large to enter the pores. The concentration of unoccupied cages can thus be around 500 times greater than in other molecular solutions that contain cavities, resulting in a marked change in bulk properties, such as an eightfold increase in the solubility of methane gas. Our results provide the basis for development of a new class of functional porous materials for chemical processes, and we present a one-step, multigram scale-up route for highly soluble 'scrambled' porous cages prepared from a mixture of commercially available reagents. The unifying design principle for these materials is the avoidance of functional groups that can penetrate into the molecular cage cavities.
Resumo:
A series of porous organic cages is examined for the selective adsorption of sulphur hexafluoride (SF6) over nitrogen. Despite lacking any metal sites, a porous cage, CC3, shows the highest SF6/N2 selectivity reported for any material at ambient temperature and pressure, which translates to real separations in a gas breakthrough column. The SF6 uptake of these materials is considerably higher than would be expected from the static pore structures. The location of SF6 within these materials is elucidated by x-ray crystallography, and it is shown that cooperative diffusion and structural rearrangements in these molecular crystals can rationalize their superior SF6/N2 selectivity.