56 resultados para Resonant photoemission


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The R-matrix incorporating time (RMT) method is a method developed recently for solving the time-dependent Schrödinger equation for multielectron atomic systems exposed to intense short-pulse laser light. We have employed the RMT method to investigate the time delay in the photoemission of an electron liberated from a 2p orbital in a neon atom with respect to one released from a 2s orbital following absorption of an attosecond xuv pulse. Time delays due to xuv pulses in the range 76-105 eV are presented. For an xuv pulse at the experimentally relevant energy of 105.2 eV, we calculate the time delay to be 10.2±1.3 attoseconds (as), somewhat larger than estimated by other theoretical calculations, but still a factor of 2 smaller than experiment. We repeated the calculation for a photon energy of 89.8 eV with a larger basis set capable of modeling correlated-electron dynamics within the neon atom and the residual Ne ion. A time delay of 14.5±1.5 as was observed, compared to a 16.7±1.5 as result using a single-configuration representation of the residual Ne+ ion. 

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the angular correlations between the photons emitted in the dielectronic recombination (DR) of initially hydrogenlike heavy ions. The theoretical analysis is performed based on a density-matrix approach and Dirac's relativistic theory. Special emphasis has been placed upon the effects of the higher-order, nondipole terms in the expansion of the electron-photon interaction. To illustrate these effects, we present and discuss detailed calculations for K-LL DR of initially hydrogenlike xenon, gold, and uranium. These computations show that the angular correlations are significantly affected by interference between the leading electric-dipole (E1) and the magnetic-quadrupole (M2) transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the R-matrix Floquet theory we have carried out non-perturbative, ab initio one- and two-colour calculations of the multiphoton ionization of magnesium with the laser frequencies chosen such that the initial state of the atom is resonantly coupled with autoionizing resonances of the atom. Good agreement is obtained with previous calculations in the low-intensity regimes. The single-photon ionization from the 3s3p P excited state of magnesium has been studied in the vicinity of the 3p S autoionizing resonance at non-perturbative laser intensities. Laser-induced degenerate states (LIDS) are observed for modest laser intensities. By adding a second laser which resonantly couples the 3p S = and 3p3d P autoionizing levels, we show that, due to the small width of the 3p3d P state, LIDS occur between this state and the 3s3p P state at intensities of the first laser below 10 W cm . We next investigate the case in which the first laser induces a resonant two-photon coupling between the ground state and the 3p S autoionizing state, while the second laser again resonantly couples the respective 3p S and 3p3d P autoionizing states. At weak intensities, our calculations compare favourably with recent experimental data and calculations. We show that when the intensity of the first laser is increased, the effect of an additional autoionizing state, the 4s5s S state, becomes significant. This state is coupled to the 3p3d P autoionizing level by one photon, inducing a triply resonant processes. We show that LIDS occur among the three autoionizing levels and we discuss their effect on the decay rate of the ground state. We consider dressed two- and three-level atoms which can be used to model the results of our calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic band structure of vacuum cleaved single-crystal indium selenide has been investigated by X-ray and ultraviolet photoelectron spectroscopy. The valence band consists of three well separated groups, one derived from the Se 4s levels, and two derived from p-like wavefunctions. The band structure and valence band density of states has been calculated using a tight-binding single-layer approximation and all the major features in the experimental spectra are well accounted for. The spin-orbit splitting and electron loss structure associated with the In 4d core level is also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The band structure of CdI has been calculated using a modified semi-empirical tight-binding method and the results obtained have been compared with both angularly averaged and angularly resolved photoemission spectra. The theoretically computed density of states distribution is in excellent agreement with angularly averaged results and all the main features observed experimentally are reproduced in the theory. Angularly resolved spectra have been used to draw up energy band dispersion curves directly and agreement with calculated bands in both the Gamma M and Gamma K directions of the Brillouin zone is good.