57 resultados para Resistance Associated Protein-2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Failure to efficiently induce apoptosis contributes to cisplatin resistance in non-small-cell lung cancer (NSCLC). Although BCL-2-associated X protein (BAX) and BCL-2 antagonist killer (BAK) are critical regulators of the mitochondrial apoptosis pathway, their requirement has not been robustly established in relation to cisplatin. Here, we show that cisplatin can efficiently bypass mitochondrial apoptosis block caused by loss of BAX and BAK, via activation of the extrinsic death receptor pathway in some model cell lines. Apoptosis resistance following cisplatin can only be observed when both extrinsic and intrinsic pathways are blocked, consistent with redundancy between mitochondrial and death receptor pathways in cisplatin-induced apoptosis. In H460 NSCLC cells, caspase-8 cleavage was shown to be induced by cisplatin and is dependent on death receptor 4, death receptor 5, Fas-associated protein with death domain, acid sphingomyelinase and ceramide synthesis. In contrast, cisplatin-resistant cells fail to activate caspase-8 via this pathway despite conserving sensitivity to death ligand-driven activation. Accordingly, caspase-8 activation block acquired during cisplatin resistance, can be bypassed by death receptor agonism. © 2012 Macmillan Publishers Limited

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD2-associated protein (CD2AP) is essential for podocyte function. CD2AP mutations have been found in patients with focal segmental glomerulosclerosis, a disease histologically resembling diabetic nephropathy and often progressing to end-stage renal disease (ESRD). We hypothesised that variations in the CD2AP gene may contribute to susceptibility to glomerular injury in diabetes and investigated if single-nucleotide polymorphisms (SNPs) in CD2AP are associated with diabetic nephropathy in patients with type 1 diabetes. The discovery cohort consisted of 2,251 Finnish patients with type 1 diabetes. SNPs were selected from the HapMap database to cover the CD2AP gene. The associations between genotyped SNPs and diabetic nephropathy or ESRD were analysed with the chi-squared test and logistic regression. Three SNPs were selected for replication in cohorts from Denmark, Italy, the United Kingdom and Ireland. None of the 15 successfully genotyped SNPs were associated with diabetic nephropathy when compared to patients with normal albumin excretion rate. However, when genotype frequencies in patients with ESRD were compared with all other patients, two CD2AP SNPs, rs9369717 and rs9349417, were found to be associated with ESRD. The meta-analysis of the original and two additional European cohorts resulted in significant p values

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are crucial in the innate immune response to pathogens, in that they recognize and respond to pathogen associated molecular patterns, which leads to activation of intracellular signaling pathways and altered gene expression. Vaccinia virus (VV), the poxvirus used to vaccinate against smallpox, encodes proteins that antagonize important components of host antiviral defense. Here we show that the VV protein A52R blocks the activation of the transcription factor nuclear factor kappa B (NF-kappa B) by multiple TLRs, including TLR3, a recently identified receptor for viral RNA. A52R associates with both interleukin 1 receptor-associated kinase 2 (IRAK2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two key proteins important in TLR signal transduction. Further, A52R could disrupt signaling complexes containing these proteins. A virus deletion mutant lacking the A52R gene was attenuated compared with wild-type and revertant controls in a murine intranasal model of infection. This study reveals a novel mechanism used by VV to suppress the host immunity. We demonstrate viral disabling of TLRs, providing further evidence for an important role for this family of receptors in the antiviral response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We found that engagement of beta 2 integrins on human neutrophils induced activation of RhoA, as indicated by the increased ratio of GTP:GTP 1 GDP recovered on RhoA and translocation of RhoA to a membrane fraction. The clustering of beta 2 integrins also induced a time-dependent increase in GDP bound to RhoA, which correlated with beta 2 integrin-induced activation of p190RhoGAP. The activation of p190RhoGAP was completely blocked by [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] (PP1), a selective inhibitor of Src family tyrosine kinases. However, clustering of beta 2 integrins did not increase the basal tyrosine phosphorylation of p190RhoGAP, nor did it affect the amount of p120RasGAP bound to p190RhoGAP. Instead, the beta 2 integrin-induced activation of p190RhoGAP was accompanied by increased tyrosine phosphorylation of a p190RhoGAP-associated protein, p120RasGAP, and accumulation of both p120RasGAP and p190RhoGAP in a membrane fraction. PP1 blocked the beta 2 integrin-induced phosphorylation of p120RasGAP, as well as the translocation of p190RhoGAP and p120RasGAP, but it did not affect the accumulation of RhoA in the membrane fraction. In agreement with the mentioned findings, PP1 also increased the GTP:GTP 1 GDP ratio recovered on RhoA immunoprecipitated from beta2 integrin-stimulated cells. Thus, in neutrophils, beta 2 integrin-induced activation of p190RhoGAP requires a signal from a Src family tyrosine kinase, but it does not occur via the signaling pathway responsible for activation of RhoA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aims:Mid-gut carcinoids (MGC) are the most common of the gastrointestinal carcinoid tumours. There is a lack of reliable prognostic indicators for MGC. Cox-2 and Bcl-2 were evaluated as prognostic biomarkers in a cohort of well-characterised non-appendiceal MGC. Methods: Tissue from the primary MGC tumours of 37 patients was subjected to immunohistochemical detection of Cox-2 and Bcl-2. In 9 cases tissue from secondary lesions was also examined. The study assessed whether tumour-associated Cox-2 and Bcl-2 expression were related to patient survival. Results: Cox-2 expression was demonstrated in 30/36 primary tumours. When all tumours were analysed Cox-regression analysis indicated a trend towards worsening survival with increasing Cox-2 histoscore (intensity x proportion; hazard ratio 1.53, 95%CI 0.93, 2.52; p=0.09). Analysis of Cox-2 positive tumours revealed a highly significant association between increasing histoscore and decreased survival (hazard ratio 3.03, 95%CI 1.33, 6.91, p=0.008). Tumour-associated Bcl-2 expression had no effect on patient survival (hazard ratio 1.12, 95% CI 0.42, 2.99 p=0.82). There was no significant association between Cox-2 and Bcl-2 expression (ï?£2 p=0.16), or Cox-2 histoscore and Bcl-2 expression (MWU p=0.59). Analysis of the Cox-2 histoscores of primary tumours and their corresponding secondary lesions, revealed a statistically significant trend towards increasing histoscore in the latter (Wilcoxon p=0.04). Conclusions: This study has provided evidence that Cox-2 expression in primary MGC may be associated with a more negative prognostic outlook.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New elements associated withWeb 2.0 relating to interactivity and end-user focus have combined with the availability of newlevels of information to encourage the development of what may be termed a Gov 2.0 approach.This, in combination with recent initiatives in the modernising government programme, has emphasised new levels of public participation and engagement with government as well as a re-engineering of public services tomake them more responsive to their end users. Adopting a governmentality perspective, it is argued that this involves a wider process of governing through constructing and reconstructing ideas of the public, community and individual citizen-consumers who take on a role in their own governance. It is argued that this fundamental re-working of the nature of what is public represents a constitutional change that is perhaps more signi¢cant than the constitutional reform programme directed to formal government which attracts more attention

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction of endotoxin tolerance leads to a reduced inflammatory response after repeated challenge by LPS and is important for resolution of inflammation and prevention of tissue damage. Enterobacterial LPS is recognized by the TLR4 signaling complex, whereas LPS of some non-enterobacterial organisms is capable of signaling independently of TLR4 utilizing TLR2-mediated signal transduction instead. In this study we report that Porphyromonas gingivalis LPS, a TLR2 agonist, fails to induce a fully endotoxin tolerant state in a human monocytic cell line (THP-1) and mouse bone marrow-derived macrophages. In contrast to significantly decreased production of human IL-8 and TNF-alpha and, in mice, keratinocyte-derived cytokine (KC), macrophage inflammatory protein-2 (MIP-2), and TNF-alpha after repeated challenge with Escherichia coli LPS, cells repeatedly exposed to P. gingivalis LPS responded by producing less TNF-alpha but sustained elevated secretion of IL-8, KC, and MIP-2. Furthermore, in endotoxin-tolerant cells, production of IL-8 is controlled at the signaling level and correlates well with NF-kappa B activation, whereas TNF-alpha expression is blocked at the gene transcription level. Interferon beta plays an important role in attenuation of chemokine expression in endotoxin-tolerized cells as shown in interferon regulatory factor-3 knock-out mice. In addition, human gingival fibroblasts, commonly known not to display LPS tolerance, were found to be tolerant to repeated challenge by LPS if pretreated with interferon beta. The data suggest that the inability of the LPS-TLR2 complex to induce full endotoxin tolerance in monocytes/macrophages is related to diminished production of interferon beta and may partly explain the involvement of these LPS isoforms in the pathogenesis of chronic inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The mitotic arrest deficiency protein 2 (MAD2) is a key component of the mitotic spindle assembly checkpoint, monitoring accurate chromosomal alignment at the metaphase plate before mitosis. MAD2 also has a function in cellular senescence and in a cell’s response to microtubule inhibitory (MI) chemotherapy exemplified by paclitaxel.
METHODS: Using an siRNA approach, the impact of MAD2 down-regulation on cellular senescence and paclitaxel responsiveness was investigated. The endpoints of senescence, cell viability, migration, cytokine expression, cell cycle analysis and anaphase bridge scoring were carried out using standard approaches.
RESULTS: We show that MAD2 down-regulation induces premature senescence in the MCF7 breast epithelial cancer cell line. These MAD2-depleted (MAD2k) cells are also significantly replicative incompetent but retain viability. Moreover, they show significantly higher levels of anaphase bridges and polyploidy compared to controls. In addition, these cells secrete higher levels of IL-6 and IL-8
representing key components of the senescence-associated secretory phenotype (SASP) with the ability to impact on neighbouring cells. In support of this, MAD2kcells show enhanced migratory ability. At 72 h after paclitaxel, MAD2kcells show a significant further induction of senescence compared with paclitaxel naive controls. In addition, there are significantly more viable cells in the MAD2k MCF7 cell line after paclitaxel reflecting the observed increase in senescence.
CONCLUSION: Considering that paclitaxel targets actively dividing cells, these senescent cells will evade cytotoxic kill. In conclusion, compromised MAD2 levels induce a population of senescent cells resistant to paclitaxel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex) - from two Great Lakes and two crater lakes in Nicaragua - to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (dC and dN) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution. © 2012 Blackwell Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3ß (LC3-ßII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1a (IRE1a)-dependent manner. Knockdown of XBP1 or IRE1a by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3ß expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt -537 to -755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential therapeutic value of cell-based therapy with mesenchymal stem cells (MSC) has been reported in mouse models of polymicrobial peritoneal sepsis. However, the mechanisms responsible for the beneficial effects of MSC have not been well defined. Therefore, we tested the therapeutic effect of intravenous bone marrow-derived human MSC in peritoneal sepsis induced by gram-negative bacteria. At 48 h, survival was significantly increased in mice treated with intravenous MSC compared with control mice treated with intravenous fibroblasts (3T3) or intravenous PBS. There were no significant differences in the levels of TNF-a, macrophage inflammatory protein 2, or IL-10 in the plasma. However, there was a marked reduction in the number of bacterial colony-forming units of Pseudomonas aeruginosa in the blood of MSC-treated mice compared with the 3T3 and PBS control groups. In addition, phagocytic activity was increased in blood monocytes isolated from mice treated with MSC compared with the 3T3 and PBS groups. Furthermore, levels of C5a anaphylotoxin were elevated in the blood of mice treated with MSC, a finding that was associated with upregulation of the phagocytosis receptor CD11b on monocytes. The phagocytic activity of neutrophils was not different among the groups. There was also an increase in alternately activated monocytes/macrophages (CD163- and CD206-positive) in the spleen of the MSC-treated mice compared with the two controls. Thus intravenous MSC increased survival from gram-negative peritoneal sepsis, in part by a monocyte-dependent increase in bacterial phagocytosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrrolo-1,5-benzoxazepine-15 (PBOX-15) is a novel microtubule depolymerization agent that induces cell cycle arrest and subsequent apoptosis in a number of cancer cell lines. Chronic lymphocytic leukemia (CLL) is characterized by clonal expansion of predominately nonproliferating mature B cells. Here, we present data suggesting PBOX-15 is a potential therapeutic agent for CLL. We show activity of PBOX-15 in samples taken from a cohort of CLL patients (n = 55) representing both high-risk and low-risk disease. PBOX-15 exhibited cytotoxicity in CLL cells (n = 19) in a dose-dependent manner, with mean IC(50) of 0.55 mu mol/L. PBOX-15 significantly induced apoptosis in CLL cells (n = 46) including cells with poor prognostic markers: unmutated IgV(II) genes, CD38 and zeta-associated protein 70 (ZAP-70) expression, and fludarabine-resistant cells with chromosomal deletions in 17p. In addition, PBOX-15 was more potent than fludarabine in inducing apoptosis in fludarabine-sensitive cells. Pharmacologic inhibition and small interfering RNA knockdown of caspase-8 significantly inhibited PBOX-15-induced apoptosis. Pharmacologic inhibition of c-jun NH(2)-terminal kinase inhibited PBOX-15-induced apoptosis in mutated IgV(II) and ZAP-70(-) CLL cells but not in unmutated IgV(II) and ZAP-70(+) cells. PBOX-15 exhibited selective cytotoxicity in CLL cells compared with normal hematopoietic cells. Our data suggest that PBOX-15 represents a novel class of agents that are toxic toward both high-risk and low-risk CLL cells. The need for novel treatments is acute in CLL, especially for the subgroup of patients with poor clinical outcome and drug-resistant disease. This study identifies a novel agent with significant clinical potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Age-related macular degeneration (AMD) is the leading cause of blindness among white caucasians over the age of 50 years with a prevalence rate expected to increase markedly with an anticipated increase in the life span of the world population. To further expand our knowledge of the genetic architecture of the disease, we pursued a candidate gene approach assessing 25 genes and a total of 109 variants. Of these, synonymous single nucleotide polymorphism (SNP) rs17810398 located in death-associated protein-like 1 (DAPL1) was found to be associated with AMD in a joint analysis of 3,229 cases and 2,835 controls from five studies [combined P ADJ = 1.15 × 10(-6), OR 1.332 (1.187-1.496)]. This association was characterized by a highly significant sex difference (P diff = 0.0032) in that it was clearly confined to females with genome-wide significance [P ADJ = 2.62 × 10(-8), OR 1.541 (1.324-1.796); males: P ADJ = 0.382, OR 1.084 (0.905-1.298)]. By targeted resequencing of risk and non-risk associated haplotypes in the DAPL1 locus, we identified additional potentially functional risk variants, namely a common 897-bp deletion and a SNP predicted to affect a putative binding site of an exonic splicing enhancer. We show that the risk haplotype correlates with a reduced retinal transcript level of two, less frequent, non-canonical DAPL1 isoforms. DAPL1 plays a role in epithelial differentiation and may be involved in apoptotic processes thereby suggesting a possible novel pathway in AMSaveD pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Multiyear epidemics of Salmonella enterica serovar Typhi have been reported from countries across eastern and southern Africa in recent years. In Blantyre, Malawi, a dramatic increase in typhoid fever cases has recently occurred, and may be linked to the emergence of the H58 haplotype. Strains belonging to the H58 haplotype often exhibit multidrug resistance and may have a fitness advantage relative to other Salmonella Typhi strains.

METHODS: To explore hypotheses for the increased number of typhoid fever cases in Blantyre, we fit a mathematical model to culture-confirmed cases of Salmonella enterica infections at Queen Elizabeth Central Hospital, Blantyre. We explored 4 hypotheses: (1) an increase in the basic reproductive number (R0) in response to increasing population density; (2) a decrease in the incidence of cross-immunizing infection with Salmonella Enteritidis; (3) an increase in the duration of infectiousness due to failure to respond to first-line antibiotics; and (4) an increase in the transmission rate following the emergence of the H58 haplotype.

RESULTS: Increasing population density or decreasing cross-immunity could not fully explain the observed pattern of typhoid emergence in Blantyre, whereas models allowing for an increase in the duration of infectiousness and/or the transmission rate of typhoid following the emergence of the H58 haplotype provided a good fit to the data.

CONCLUSIONS: Our results suggest that an increase in the transmissibility of typhoid due to the emergence of drug resistance associated with the H58 haplotype may help to explain recent outbreaks of typhoid in Malawi and similar settings in Africa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AINT/ERIC/TACC genes encode novel proteins with a coiled coil domain at their C-terminus. The founding member of this expanding family of genes, transforming acidic coiled coil 1 (TACC1), was isolated from a BAC contig spanning the breast cancer amplicon-1 on 8p11. Transfection of cells in vitro with TACC1 resulted in anchorage-independent growth consistent with a more "neoplastic" phenotype. Database searches employing the human TACC1 sequence revealed other novel genes, TACC2 and TACC3, with substantial sequence homology particularly in the C-terminal regions encoding the coiled coil domains. TACC2, located at 10q26, is similar to anti-zuai-1 (AZU-1), a candidate breast tumour suppressor gene, and ECTACC, an endothelial cell TACC which is upregulated by erythropoietin (Epo). The murine homologue of TACC3, murine erythropoietin-induced cDNA (mERIC-1) was also found to be upregulated by Epo in the Friend virus anaemia (FVA) model by differential display-PCR. Human ERIC-1, located at 4p16.3, has been cloned and encodes an 838-amino acid protein whose N- and C-terminal regions are highly homologous to the shorter 558-amino acid murine protein, mERIC-1. In contrast, the central portions of these proteins differ markedly. The murine protein contains four 24 amino acid imperfect repeats. ARNT interacting protein (AINT), a protein expressed during embryonic development in the mouse, binds through its coiled coil region to the aryl hydrocarbon nuclear translocator protein (ARNT) and has a central portion that contains seven of the 24 amino acid repeats found in mERIC-1. Thus mERIC-1 and AINT appear to be developmentally regulated alternative transcripts of the gene. Most members of the TACC family discovered so far contain a novel nine amino acid putative phosphorylation site with the pattern [R/K]-X(3)-[E]-X(3)-Y. Genes with sequence homology to the AINT/ERIC/TACC family in other species include maskin in Xenopus, D-TACC in Drosophila and TACC4 in the rabbit. Maskin contains a peptide sequence conserved among eIF-4E binding proteins that is involved in oocyte development. D-TACC cooperates with another conserved microtubule-associated protein Msps to stabilise spindle poles during cell division. The diversity of function already attributed to this protein family, including both transforming and tumour suppressor properties, should ensure that a new and interesting narrative is about to unfold.