106 resultados para Regime semi-aberto
Modeling of the Behaviour of Semi-Crystalline Polypropylene at Elevated Strain Rate and Temperature.
Resumo:
Functional and non-functional concerns require different programming effort, different techniques and different methodologies when attempting to program efficient parallel/distributed applications. In this work we present a "programmer oriented" methodology based on formal tools that permits reasoning about parallel/distributed program development and refinement. The proposed methodology is semi-formal in that it does not require the exploitation of highly formal tools and techniques, while providing a palatable and effective support to programmers developing parallel/distributed applications, in particular when handling non-functional concerns.
Resumo:
The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross-phase-modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, Phys. Rev. A 65, 33 833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schrodinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on nonlinear interaction via double EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:50 beam splitter and two photodetectors. In order to show the entanglement of an entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.
Resumo:
Background: Open abdominal aortic aneurysm (AAA) repair is associated with a significant morbidity (primarily respiratory and cardiac complications) and an overall mortality rate of 4% to 10%. We tested the hypothesis that perioperative fluid restriction would reduce complications and improve outcome after elective open AAA repair.
Experimental observations of the stress regime in unsaturated compacted clay when laterally confined
Resumo:
Construction processes often involve reformation of the landscape, which will inevitably encompass compaction of artificially placed soils. A common application of fill materials is their use as backfill in many engineering applications, for example behind a retaining wall. The post-construction behaviour of clay fills is complex with respect to stresses and deformation when the fills become saturated over time. Heavily compacted fills swells significantly more than the lightly compacted fills. This will produce enhanced lateral stresses if the fill is laterally restrained. The work presented in this paper examines how the stress regime in unsaturated clay fills changes with wetting under laterally restrained conditions. Specimens of compacted kaolin, with different initial conditions, were wetted to various values of suction under zero lateral strain at constant net overburden pressure which allowed the concept of K 0 (the ratio between the net horizontal stress and the net vertical stress) to be examined. Tests were also carried out to examine the traditional concept of the earth pressure coefficient ‘at rest' under loading and unloading and its likely effects on the stress–strain properties. The results have shown that the stress regime (i.e. the lateral stress) changes significantly during wetting under laterally restrained conditions. The magnitude of the change is affected by the initial condition of the soil. The results have also indicated that the earth pressure coefficient ‘at rest' during loading (under the normally consolidated condition) is unaffected by suction and such loading conditions inevitably lead to the development of anisotropic stress–strain properties