75 resultados para Recreational vehicles
Resumo:
This paper compares the Random Regret Minimization and the Random Utility Maximization models for determining recreational choice. The Random Regret approach is based on the idea that, when choosing, individuals aim to minimize their regret – regret being defined as what one experiences when a non-chosen alternative in a choice set performs better than a chosen one in relation to one or more attributes. The Random Regret paradigm, recently developed in transport economics, presents a tractable, regret-based alternative to the dominant choice paradigm based on Random Utility. Using data from a travel cost study exploring factors that influence kayakers’ site-choice decisions in the Republic of Ireland, we estimate both the traditional Random Utility multinomial logit model (RU-MNL) and the Random Regret multinomial logit model (RR-MNL) to gain more insights into site choice decisions. We further explore whether choices are driven by a utility maximization or a regret minimization paradigm by running a binary logit model to examine the likelihood of the two decision choice paradigms using site visits and respondents characteristics as explanatory variables. In addition to being one of the first studies to apply the RR-MNL to an environmental good, this paper also represents the first application of the RR-MNL to compute the Logsum to test and strengthen conclusions on welfare impacts of potential alternative policy scenarios.
Resumo:
In recent years unmanned vehicles have grown in popularity, with an ever increasing number of applications in industry, the military and research within air, ground and marine domains. In particular, the challenges posed by unmanned marine vehicles in order to increase the level of autonomy include automatic obstacle avoidance and conformance with the Rules of the Road when navigating in the presence of other maritime traffic. The USV Master Plan which has been established for the US Navy outlines a list of objectives for improving autonomy in order to increase mission diversity and reduce the amount of supervisory intervention. This paper addresses the specific development needs based on notable research carried out to date, primarily with regard to navigation, guidance, control and motion planning. The integration of the International Regulations for Avoiding Collisions at Sea within the obstacle avoidance protocols seeks to prevent maritime accidents attributed to human error. The addition of these critical safety measures may be key to a future growth in demand for USVs, as they serve to pave the way for establishing legal policies for unmanned vessels.
Recreational drug-taking: an ethnographic account of perceived and experienced risk among drug users
Resumo:
This paper presents a new methodology for solving the multi-vehicle formation control problem. It employs a unique extension-decomposition-aggregation scheme to transform the overall complex formation control problem into a group of subproblems, which work via boundary interactions or disturbances. Thus, it is proved that the overall formation system is exponentially stable in the sense of Lyapunov, if all the individual augmented subsystems (IASs) are stable. Linear matrix inequality-based H8 control methodology is employed to design the decentralized formation controllers to reject the impact of the formation changes being treated as boundary disturbances and guarantee the stability of all the IASs, consequently maintaining the stability of the overall formation system. Simulation studies are performed to verify the stability, performance, and effectiveness of the proposed strategy.